Intramolecular Activation of Pepsinogen

  • Jean A. Hartsuck
  • Joseph MarciniszynJr.
  • Jung San Huang
  • Jordan Tang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)


Porcine pepsinogen comprises a single polypeptide chain of 371 residues. The NH2-terminal sequence is Leu-Val- (1,2). After activation, pepsin also is a single polypeptide chain. The dominant pepsin species results from removal of 44 residues from the NH2-terminus of the pepsin so that the NH2-terminal sequence is Ile-Gly-(3). Other NH2-terminal sequences have been observed (3,4,5). Such heterogeneity is mainly the result of removal of a different number of residues from the NH2-terminus of pepsinogen. Under certain activation conditions, however, cleavage of internal peptide bonds also occurs, so that the resulting mixture contains pepsin molecules, which are not a single polypeptide chain (5).


Acetic Anhydride Activation Peptide Acid Protease Single Polypeptide Chain Semilog Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ong, E. B., and Perlmann, G. E. (1968) J. Biol. Chem. 243, 6104–6109Google Scholar
  2. 2.
    Pedersen, V. B., and Foltmann, B. (1973) FEBS Lett. 35, 255–256PubMedCrossRefGoogle Scholar
  3. 3.
    Sepulveda, P., Marciniszyn, J., Jr., Liu, D., and Tang, J. (1975) J. Biol. Chem. 250, 5082–5088Google Scholar
  4. 4.
    Sanny, C. G., Hartsuck, J. A., and Tang, J. (1975) J. Biol.Chem. 250, 2635–2639PubMedGoogle Scholar
  5. 5.
    Rajagopalan, T. G., Moore, S., and Stein, W. H. (1966) J. Biol. Chem. 241, 4940–4950Google Scholar
  6. 6.
    Herriott, R. M. (1938) J. Gen. Physiol. 21, 501–540Google Scholar
  7. 7.
    Bustin, M., and Conway-Jacobs, A. (1971) J. Biol. Chem. 246, 615–620Google Scholar
  8. 8.
    McPhie, P. (1972) J. Biol. Chem. 247, 4277–4281Google Scholar
  9. 9.
    Al-Janabi, J., Hartsuck, J. A., and Tang, J. (1972) J. Biol. Chem. 247, 4628–4632Google Scholar
  10. 10.
    Bovey, F. A., and Yanari, S. S. (1960) The Enzymes (Boyer, P. D., Lardy, P. D., and Myrbäck, K. eds) 2nd edition, Vol. 4, pp. 63–92Google Scholar
  11. 11.
    Bohak, Z. (1973) Eur. J. Biochem. 32, 547–554PubMedCrossRefGoogle Scholar
  12. 12.
    Marciniszyn, J., Jr., Huang, J. S., Hartsuck, J. A., and Tang,J. (1976) J. Biol. Chem. 251, 7095–7102Google Scholar
  13. 13.
    Al-Janabi, J., Hartsuck, J. A., and Tang, J., unpublished resultsGoogle Scholar
  14. 14.
    Koga, D., and Hayashi, K. (1976) J. Biochem. 79, 549–558PubMedGoogle Scholar
  15. 15.
    Pedersen, V. B. (1976) Abstr. Xth Int. Union Biochem. Meet. Hamburg, Abstr. No. 04–3–319Google Scholar
  16. 16.
    Tang, J. (1970) Methods Enzymol. 19, 406–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Jean A. Hartsuck
    • 1
    • 2
  • Joseph MarciniszynJr.
    • 1
    • 2
  • Jung San Huang
    • 1
    • 2
  • Jordan Tang
    • 1
    • 2
  1. 1.Laboratory of Protein StudiesOklahoma Medical Research FoundationOklahoma CityUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations