The Crystal Structure of an Acid Protease from Rhizopus Chinensis at 2.5 a Resolution

  • E. Subramanian
  • M. Liu
  • I. D. A. Swan
  • D. R. Davies
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)

Abstract

The acid-protease from Rhizopus chinensis was first isolated by Fukumoto, Tsuru, and Yamamoto (1). Its optimum pH for catalytic activity was shown to be between 2.9 and 3.3 (1). Although its complete sequence has not yet been determined, some limited sequence data are available — particularly that of the 39 amino-terminal residues (2,3) and of the residues in the immediate vicinity of the catalytically active aspartic acid residues (4,5). These data show that this enzyme has substantial sequence homology with porcine pepsin. Investigations of the kinetics of catalysis (6,7) have led to proposals of an extended subsite specificity.

Keywords

Heavy Atom Acid Protease Aromatic Side Chain Heavy Atom Derivative Side Chain Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fukumoto, J., Tsuru, D., and Yamamoto, T. (1967) Agr. Biol. Chem. 31, 710–717CrossRefGoogle Scholar
  2. 2.
    Gripon, J. C., Rhee, S. H., and Hofmann, T., Private Commun.Google Scholar
  3. 3.
    Sepulveda, P., Jackson, K. W., and Tang, J. (1975) Biochem. Biophys. Res. Commun. 63, 1106–1112PubMedCrossRefGoogle Scholar
  4. 4.
    Graham, J. E. S., Sodek, J., and Hofmann, T. (1973) Can. J. Biochem. 51, 789–796PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, K. C. S., and Tang, J. (1972) J. Biol. Chem. 247, 2566–2574Google Scholar
  6. 6.
    Voynick, I. M., and Fruton, J. S. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 257–259Google Scholar
  7. 7.
    Sachdev, G. P., Brownstein, A. D., and Fruton, J. S. (1975) J. Biol. Chem. 250, 501–507Google Scholar
  8. 8.
    Swan, I. D. A. (1971) J. Mol. Biol. 60, 405–407Google Scholar
  9. 9.
    Subramanian, E., Swan, I. D. A., and Davies, David R. (1976) Biochem. Biophys. Res. Commun. 68, 875–880Google Scholar
  10. 10.
    Subramanian, E., Swan, I. D. A., Liu, Mamie, Davies, D. R., Jenkins, J. A., Tickle, I. J., and Blundell, T. L. (1977) Proc. Natl. Acad. Sci. U.S.A.(in press)Google Scholar
  11. 11.
    Subramanian, E., and Cohen, G. H. (1977) UnpublishedGoogle Scholar
  12. 12.
    Blow, D. M., and Crick, F. H. C. (1959) Acta Crystallogr. 12, 794CrossRefGoogle Scholar
  13. 13.
    Fruton, J. S. (1971) The Enzymes (P. D. Boyer, ed) Vol. 3, 3rd ed., p. 119, Academic Press, New YorkGoogle Scholar
  14. 14.
    Arima, K., Yu, J., and Iwasaki, S. (1971) Methods Enzymol. 19, 446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • E. Subramanian
    • 1
  • M. Liu
    • 1
  • I. D. A. Swan
    • 1
  • D. R. Davies
    • 1
  1. 1.Laboratory of Molecular BiologyNational Institute of Arthritis, Metabolism and Digestive Diseases, NIHBethesdaUSA

Personalised recommendations