X-Ray Crystallographic Studies of Pepsin

  • N. S. Andreeva
  • A. E. Gustchina
  • A. A. Fedorov
  • N. E. Shutzkever
  • T. V. Volnova
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)


Pepsin was the first object used to obtain x-ray photographs of protein crystals (1) and the second protein to be crystallized (2). J. Northrop developed the method of porcine pepsin crystallization in this well known investigation (2). Two of the crystal forms of pepsin that have been described, the first hexagonal form has been studied by J. Bernal and D. Crowfoot (1), and by M. Perutz (3). The unit cell of hexagonal pepsin crystals was too large, however, for studies of it to continue at the initial stage of the development of protein crystallography. The second form of the crystal was more suitable for x-ray crystallographic studies.


Heavy Atom Iodine Atom Acid Protease Fourier Synthesis Helical Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernal, J. D., and Crowfoot, D. (1934) Nature 133, 794–795CrossRefGoogle Scholar
  2. 2.
    Northrop, J. H. (1930) J. Gen. Physiol. 13, 739–766Google Scholar
  3. 3.
    Perutz, M. F. (1949) Research 2, 52–61PubMedGoogle Scholar
  4. 4.
    Bakulina, V. M., Borisov, V. V., Melik-Adamjan, V. R., Shutzkever, N. E., and Andreeva, N. S. (1968) Kristallogr. 13, 44–48Google Scholar
  5. 5.
    Andreeva, N. S., Borisov, V. V., Melik-Adamjan, V. R., Raiz, V. S., Trofimova, L. N., and Shutzkever, N. E. (1971) Mol. Biophys. 5, 908–916Google Scholar
  6. 6.
    Muirhead, H., Cox, J., Mazzarella, L., and Perutz, M. F. (1967) J. Mol. Biol. 28, 117–156Google Scholar
  7. 7.
    Blow, D. M., and Crick, F. H. C. (1959) Acta Crystallogr. 12, 794–802CrossRefGoogle Scholar
  8. 8.
    Tang, J., Sepulveda, P., Marciniszyn, J., Jr., Chen, K. C. S., Huang, W.-Y., Tao, N., Liu, D., and Lanier, J. P. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3437–3439Google Scholar
  9. 9.
    Stepanov, V. M., and Vaganova, T. I. (1968) Biochem. Biophys. Ines. Commun. 31, 825–830Google Scholar
  10. 10.
    Huang, W.-Y., and Tang, J. (1972) J. Biol. Chem. 247, 2704–2710Google Scholar
  11. 11.
    Kitson, T. M., and Knowles, I. R. (1971) FEBS Lett. 16, 337–338PubMedCrossRefGoogle Scholar
  12. 12.
    Andreeva, N. S., Ginodman, L. M., Borisov, V. V., Melik-Adamjan, V. R., Shutzkever, N. E., and Grigoriev, V. G. (1970) Abstr. Int. Biochem. Cong., SwitaerlandGoogle Scholar
  13. 13.
    Andreeva, N. S., Fedorov, A. A., Gustchina, A. E., Shutzkever, N. E., Riskulov, R. R., and Volnova, T. V. (1976) Dok. Akad. Nauk USSR, 228, 480–483Google Scholar
  14. 14.
    Davies, D. R., and Blundell, T. Personal Communication, unpublished data (See also Chapters 3 and 4 in this volume)Google Scholar
  15. 15.
    Foltmann, B., and Pedersen, V. B. (Chapter 1 in this volume)Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • N. S. Andreeva
    • 1
  • A. E. Gustchina
    • 1
  • A. A. Fedorov
    • 1
  • N. E. Shutzkever
    • 1
  • T. V. Volnova
    • 1
  1. 1.Academy of Sciences U.S.S.R.Institute of Molecular BiologyMoscowRussia

Personalised recommendations