Anhydride Intermediates in Catalysis by Pepsin: Is Pepsin an Enzyme with Two Active Sites?

  • E. T. Kaiser
  • Y. Nakagawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)

Abstract

Porcine pepsin is known to have two types of activities in acidic solution: the catalysis of peptide bond hydrolysis and the catalysis of transpeptidation (1). The presence of amino-enzyme intermediates in the catalytic action of pepsin has been proposed by Knowles (2–4) and Antonov et al. (5). On the other hand, Silver (6) and Hofmann (7) have proposed the existence of acyl-pepsin intermediates. Some mechanisms for pepsin action such as that suggested by Zeffren and Kaiser (8) involve the postulation of both acyl- and amino-enzyme intermediates. Recently, Fruton (9,10) has suggested that kinetically significant conformational changes of the pepsin active site in the presence of substrates or products instead of the formation of acyl-enzyme or amino-enzyme intermediates may account for the various data obtained for peptide hydrolysis and transpeptidation.

Keywords

Circular Dichroism Spectrum Hydroxamic Acid Pepsin Activity Peptic Activity Porcine Pepsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clement, G. E. (1973) Prog. Bioorg. Chem. 2, 177–238Google Scholar
  2. 2.
    Knowles, J. R. (1970) Philos. Trans. R. Soc. London Ser.B., 257, 135–146CrossRefGoogle Scholar
  3. 3.
    Kitson, T. M., and Knowles, J. R. (1971) Biochem. J. 122, 249–256PubMedGoogle Scholar
  4. 4.
    Newmark, A. K., and Knowles, J. R. (1975) J. Am. Chem. Soc. 97, 3557–3559CrossRefGoogle Scholar
  5. 5.
    Antonov, V. K., Rumsh, L. D., and Tikhodeeva (1974) FEBS Lett. 46, 29–33PubMedCrossRefGoogle Scholar
  6. 6.
    Silver, M. S., and Stoddard, M. (1975) Biochemistry 14, 614–621PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi, M., and Hofmann, T. (1975) Biochem. J. 147, 549–263PubMedGoogle Scholar
  8. 8.
    Zeffren, E., and Kaiser, E. T. (1967) J. Am. Chem. Soc. 89, 4204–4208PubMedCrossRefGoogle Scholar
  9. 9.
    Sachdev, G. P., and Fruton, J. S. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 3424–3427PubMedCrossRefGoogle Scholar
  10. 10.
    Fruton, J. S. (1976) Adv. Enzymol. 44, 1–36PubMedGoogle Scholar
  11. 11.
    Fahrney, D., and Reid, T. (1967) J. Am. Chem. Soc. 89, 3941–3943Google Scholar
  12. 12.
    Zeffren, E., and Kaiser, E. T. (1968) Arch. Biochem. Biophys. 126, 965–967PubMedCrossRefGoogle Scholar
  13. 13.
    May, S. W., and Kaiser, E. T. (1971) J. Am. Chem. Soc. 93, 5567–5572CrossRefGoogle Scholar
  14. 14.
    May, S. W., and Kaiser, E. T. (1972) Biochemistry 11, 592–600PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, H. J., and Kaiser, E. T. (1974) J. Am. Chem. Soc. 96, 625–626PubMedCrossRefGoogle Scholar
  16. 16.
    Cornish-Bowden, A. J., and Knowles, J. R. (1969) Biochem. J. 113, 353–362PubMedGoogle Scholar
  17. 17.
    King, L.-H., and Kaiser, E. T. (1974) J. Am. Chem. Soc. 96, 1410–1417CrossRefGoogle Scholar
  18. 18.
    Hauser, C. R., and Renfrow, W. B., Jr. (1943) Org. Synth. Coll. 2, 607–609Google Scholar
  19. 19.
    O’Donnell, J. F., Ayres, J. T., and Mann, C. K. (1965) Anal. Chem. 37, 1161–1162CrossRefGoogle Scholar
  20. 20.
    Chow, R. B., and Kassell, B. (1968) J. Biol. Chem. 243, 1718–1724Google Scholar
  21. 21.
    Bergmann, F., and Segal, R. (1956) Biochem. J. 62, 542–546PubMedGoogle Scholar
  22. 22.
    Gross, E., and Morell, J. L. (1966) J. Biol. Chem. 241, 3638–3639Google Scholar
  23. 23.
    Moore, S., and Stein, W. H. (1963) Methods Enzymol. 6, 819–831CrossRefGoogle Scholar
  24. 24.
    Rajagopalan, T. G., Stein, W. H., and Moore, S. (1966) J. Biol. Chem. 241, 4295–4297Google Scholar
  25. 25.
    Erlanger, B. F., Vratsanos, S. M., Wasserman, N., and Cooper, A. G. (1967) Biochem. Biophys. Res. Commun. 28, 203–208Google Scholar
  26. 26.
    Hartsuck, J. A., and Tang, J. (1972) J. Biol. Chem. 247, 2575–2580Google Scholar
  27. 27.
    Tang, J., Sepulveda, P., Marciniszyn, J., Jr., Chen, K. C. S., Huang, W.-Y., Too, N., Liu, D., and Lanier, J. P. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3437–3439Google Scholar
  28. 28.
    Sepulveda, P., Marciniszyn, J., Jr., Liu, D., and Tang, J. (1975) J. Biol. Chem. 250, 5082–5088Google Scholar
  29. 29.
    Rajagopalan, T. G., Moore, S., and Stein, W. H. (1966) J. Biol. Chem. 241, 4940–4950Google Scholar
  30. 30.
    Nakagawa, Y., King Sun, L.-H., and Kaiser, E. T. (1976) J. Am. Chem. Soc. 98, 1616–1617Google Scholar
  31. 31.
    Bornstein, P., and Balian, G. (1970) J. Biol. Chem. 245, 4854–4856Google Scholar
  32. 32.
    Perlmann, G. E. (1967) “Ordered Fluids and Liquid Crystals”, Adv. in Chemistry Series No. 63, pp. 268 ( Amer. Chem. Soc. )Google Scholar
  33. 33.
    Paterson, A. F., and Knowles, J. R. (1972) Eur. J. Biochem. 31, 510–517, and references thereinGoogle Scholar
  34. 34.
    Hsu, I. N., Delbaere, L. T. J., James, M. N. G., Hofmann, T., “The Crystal Structure of Penicillopepsin at 2.8 A Resolution” (1976) Conference on Acid Proteases, Norman, Oklahoma, November 21–24 (Chapter 5 in this volume)Google Scholar
  35. 35.
    Silver, M. S., Stoddard, M., and Kelleher, M. H. (1976) J. Am. Chem. Soc. 98, 6684–6690Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • E. T. Kaiser
    • 1
  • Y. Nakagawa
    • 1
  1. 1.Departments of Chemistry and BiochemistryUniversity of ChicagoChicagoUSA

Personalised recommendations