The Meso-Telencephalic Dopamine Neuron System: A Review of Its Anatomy

  • Anders Björklund
  • Olle Lindvall

Abstract

The unmyelinated and sparsely myelinated fibre systems probably comprise the vast majority of connections in the central nervous system. Until the staining methods for degenerating fibres were introduced, their anatomy was, however, virtually unknown. The subsequent development of a new arsenal of histochemical and autoradio-graphic tracing techniques has meant a mere revolution in our understanding of the organization of many functional systems in the brain, not least the limbic system.

Keywords

Anterior Cingulate Cortex Ventral Tegmental Area Entorhinal Cortex Dopamine Neuron Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANDÉN, N.-E., CARLSSON, A., DAHLSTOM, A., FUXE, K., HILLARP, NA. & LARSSON, K. Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci., 3, 1964, 523–530.PubMedCrossRefGoogle Scholar
  2. ANDÉN, N.-E., DAHLSTROM, A., FUXE, K. & LARSSON, K. MAPPING out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon, Life Sci., 4, 1965, 1275–1279.PubMedCrossRefGoogle Scholar
  3. ANDÉN, N.-E., FUXE, K., HAMBERGER, B. 4 Hökfelt, T. A quantitative study on the nigro-neostriatal dopamine neuron system in the rat, Acta physiol. scand., 67, 1966a, 306–312.Google Scholar
  4. ANDÉN, N.-E., DAHLSTOM, A., FUXE, K., LARSSON, K., OLSON, L. UNGERSTEDT, U. Ascending monoamine neurons to the telencephalon and diencephalon, Acta physiol. scand., 67, 1966b, 313–326.CrossRefGoogle Scholar
  5. ANDERSEN, H., BRAESTRUP, C. & RANDRUP, A. Apomorphine-induced stereotyped biting in the tortoise in relation to dopaminergic mechanisms, Brain Behay. Evol,, 11, 1975, 365–373.Google Scholar
  6. AVENDANO, C., REINOSO-SUAREZ, F. & LLAMAS, A. Projections to gyrus sigmoideus from the substantia nigra in the cat, as revealed by the horseradish peroxidase retrograde transport technique, Neurosci. Lett., 2, 1976, 61–65..Google Scholar
  7. BAUMGARTEN, H.G. Biogenic monoamines in the cyclostome and lower vertebrate brain, Prog. Histochem. Cytochem., 4, 1972, 1–90Google Scholar
  8. BAUMGARTEN, H.G. 6 BRAAK, H. Catecholamine im Gehirn der Eidechse (Lacerta viridis und Lacerta muralis), Z. Zellforsch., 86, 1968, 574–602.CrossRefGoogle Scholar
  9. BECKSTEAD, R.M. Convergent thalamic and mesencephalic projections to the anterior medial cortex in the rat, J. Comp. Neur,, 166, 1976, 403–416.CrossRefGoogle Scholar
  10. BEDARD, P., LAROCHELLE, L., PARENT, A. & POIRIER, L.J. The nigrostriatal pathway: A correlative study based on neuroanatomical and neurochemical criteria in the cat and the monkey, Exp. Neurol., 25, 1969, 365–377.PubMedCrossRefGoogle Scholar
  11. BERGER, B., TASSIN, J.P., BLANC, B., MOYNE, M.A. & Thierry, A.M. Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways, Brain Res., 81, 1974, 332–337.PubMedCrossRefGoogle Scholar
  12. BERGER, B., THIERRY, A.M., TASSIN, J.P. 6 MOYNE, M.A. Dopaminergic innervation of the rat prefrontal cortex: a fluorescence histochemical study, Brain Res., 106, 1976, 133–145.PubMedCrossRefGoogle Scholar
  13. Bertler, A. Occurrence and localization of catecholamines in the human brain, Acta physiol. scand., 51, 1961, 97–107.CrossRefGoogle Scholar
  14. BERTLER, A. 6 ROSENGREN, E. Occurrence and distribution of cate- cholamines in brain, Acta physiol. scand., 47, 1959, 350–361Google Scholar
  15. BERTLER, A.,FALCK, B., GOTTFRIES, C.G., LJUNGGREN, L. 6 ROSENGREN,E. Some observations on adrenergic connections between mesencephalon and cerebral hemispheres, Acta pharmacol. et toxicol., 21, 1964, 283–289.CrossRefGoogle Scholar
  16. BARKLUND, A. 6 LINDVALL, O. Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals, Brain Res., 83, 1975, 531–537.CrossRefGoogle Scholar
  17. BJURKLUND, A., LINDVALL, O. 6 MOORE, R.Y. In A. Bj’drklund and R.Y. Moore, (eds.), The Central Catecholamine Neuron, Raven Press, New York, to be published 1977.Google Scholar
  18. BRAAK, H. Biogena Amine im Gehirn vom Frosch (Rana esculenta), Z. Zellforsch., 106, 1970, 269–308.CrossRefGoogle Scholar
  19. CAJAL, S. RAMON. Y., Histologie du Systéme Nerveux de l’Homme et des Vertébrés, Vol. 2, Consejo Superior de Investigaciones Cientificas, Inst. Ramon y Cajal, Madrid, 1955, pp. 275–278.Google Scholar
  20. CARPENTER, M.B. 6 PETER, P. Nigrostriatal and nigrothalarnic fibres in the rhesus monkey, J. Comp. Neurol., 144, 1972, 93–116.CrossRefGoogle Scholar
  21. CORRODI, H. 6 HILLARP, N.-A. Fluoreszenzmethoden zur histochemis-chen Sichtbarmachung von Monoaminen. 1: Identifizierun der fluoreszierenden Produkte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd, Heiv. Chim, Acta, 46, 1963, 2425–2430.Google Scholar
  22. CORRODI, H. 6 HILLARP, N.-X. Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 2: Identifizierung des fluoreszierenden Produktes aus Dopamin und. Formaldehyd, Heir. Chim. Acta, 47, 1964, 911–920.CrossRefGoogle Scholar
  23. DAHLSTRLSM, A. 6 FUXE, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. 1: Demonstration of monoamines in the cell bodies of brain stem neurones, Acta physiol. scand., 62, Suppl, 232, 1964, 1–55.Google Scholar
  24. DIVAC, I., LINDVALL, O., BJBRKLUND, A. 6 Passingham, R.E. Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species, Exp. Brain Res., 23, 1975, 58 (Abstr.).Google Scholar
  25. DIVAC, I., BARKLUND, A., LINDVALL, O. 6 PASSINGHAM, R.E. Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species, to be published, 1977.Google Scholar
  26. DOMESICK, V.B., BECKSTEAD, R.M. 6 NAUTA, W.J.H. Some ascending and descending projections of the substantia nigra and ventral tegmental area in the rat, Neuroscience Abstracts, vol.II Society for Neuroscience Sixth Annual Meeting, Toronto, Canada, 1976, p. 61.Google Scholar
  27. EHRINGER, H. 6 HORNYKIEWICZ, O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Wien klin. Wschr., 38, 1960, 1236–1239.CrossRefGoogle Scholar
  28. FAHN, S., LIBSCH, L.R. 6 CUTLER, R.W. Monoamines in the human neo-striatum: topographic distribution in normals and in Parkinson’s disease and their role in akinesia, rigidity, chorea, and tremor, J. neurol. Sci., 14, 1971, 427–455Google Scholar
  29. FALCK, B. Observations on the possibilities of the cellular localization of monoamines by a fluorescence method, Acta physiol. scand., 56, Suppl. 197, 1962, 1–25.Google Scholar
  30. FALCK, B., HILLARP, N.-A., THIEME, G. 6 TORP, A. Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem., 10, 1962, 348–354Google Scholar
  31. FALLON, J.H. 6 MOORE, R.Y. Dopamine innervation of some basal forebrain areas in the rat, Neuroscience Abstracts, vol. II, Society for Neuroscience Sixth Annual Meeting, Toronto, Canada, 1976, P. 486.Google Scholar
  32. FREMBERG, M.,Van fluorescence anguilla L.) fluorometric nervation of Veen, Th. & Hartwig, H.G. Formaldehyde-induced in the tel-and diencephalon of the eel (Anguilla A fluorescence microscopic and microspectroinvestigation with special reference to the in-the pituitary, Cell Tiss. Res., in press, 1977.Google Scholar
  33. FUXE, K. Evidence for the existence of monoamine neurons in the central nervous system. IV: Distribution of monoamine nerve terminals in the central nervous system, Acta physiol. scand., 64, Suppl. 247, 1965, 39–85.Google Scholar
  34. FUXE, K. & LJUNGGREN, L. Cellular localization of monoamines in the upper brain stem of the pigeon, J. Comp, Neurol., 125, 1965, 355–382.CrossRefGoogle Scholar
  35. FUXE, K., HBKFELT, T. E1 Ungerstedt, U. Morphological and functional aspects of central monoamine neurons, In C.C. Pfeiffer and J.R. Smythies, (eds.), International Review of Neurobiology, Vol. 13, Academic Press, New York and London, 1970, pp. 93–126.Google Scholar
  36. FUXE, K., HöKFELT, T., JOHANSSON, 0., JONSSON, G., Lidbrink, P. Ljungdahl, Â. The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for meso-cortico dopamine neurons, Brain Res., 82, 1974, 349–355.Google Scholar
  37. HASSLER, R. The pathological and pathophysiological basis of tremor and Parkinsonism, Proc. 2nd Int. Congr. Neuropathol. London, 1, 1955, 29–58.Google Scholar
  38. HEDREEN, J.C. E1 CHALMERS, J.P. Neuronal degeneration in rat brain induced by 6-hydroxydopamine: a histological and biochemical study, Brain Res., 47, 1972, 1–36.PubMedCrossRefGoogle Scholar
  39. HORNYKIEWICZ, O. Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin (3-Hydroxytyramin) in der Substantia nigra des normalen und Parkinson-kranken Menschen, Wien kiln. Wschr., 75, 1963, 309–312.Google Scholar
  40. HORNYKIEWICZ, 0. Dopamine (3-hydroxytyramine) and brain function, Phaimacol. Rev., 18, 1966, 925–964.Google Scholar
  41. HUFELT, T. E1 UNGERSTEDT, U. Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after uni-lateral lesions of ascending nigro-neostriatal dopamine neurons, Acta physiol. scand., 76, 1969, 415–426.CrossRefGoogle Scholar
  42. HUFELT, T., FUXE, K., JOHANSSON, O. LJUNGDAHL, A. Pharmacohistochemical evidence of the existence of dopamine nerve terminals in the limbic cortex, Europ. J. Pharmacol., 25, 1974a, 108–112Google Scholar
  43. Nuf2cc T., Ljungdahl, A., Fuxe, K. Johansson, O. Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia, Science, 184, 1974b, 177–179.Google Scholar
  44. JACOBOWITZ, D.M. PALKOVITS, M. Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. •. Forebrain (telencephalon, diencephalon), J. Comp. Neurol., 157, 1974, 13–28.PubMedCrossRefGoogle Scholar
  45. JESSELL, T.M., CUELLO, A.C. & IVERSEN, L.L. Release of dopamine from dendrites in rat substantia nigra, Nature, 260“ 1076 258–260.Google Scholar
  46. KELLY, B., SEVIOUR, P.W. 8 IVERSEN, S.D. Amphetamine and apomorphine responses in the rat following 6–0BDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res,, 94, 1975, 507–522.PubMedCrossRefGoogle Scholar
  47. KORF, J., ZIELEMAN, M. WESTERINK, B.H.C. Dopamine release in substantia nigra? Nature, 260, 1976, 257–258.PubMedCrossRefGoogle Scholar
  48. LINDVALL, U. Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat, Brain Dos., 87, 1975, 89–95.Google Scholar
  49. LINDVALL, O. DJöRKLUND A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method, Acta physiol scand., Suppl. 412, 1974, 1–48.Google Scholar
  50. LINDVALL, O., Björklund, A. & Divac, I. To be published (1977).Google Scholar
  51. LINDVALL, O., Björklund, A., Moore, R.Y. & Stenevi, U. Mesencephalic dopamine neurons projecting to neocortex Brain Pas., 81, 1974a, 325–331.Google Scholar
  52. LINDVALL, 0. BJHRKLUND, A., NOBIN, A. 8 STENEVI, D. The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method, J. Comp. Neur., 154, l074b, 317–348.Google Scholar
  53. MOORE, R.Y., BARKLUND, A. STENEVI, U. Plastic changes in the adrenergic innervation of the rat septal area in response to denervation, Brain Res., 33, 1971a, 15–35.Google Scholar
  54. MOORE, R.Y., BHATNAGAR, R.K. HELLER, A. Anatomical and chemical studies of a nigro-neostriatal projection in the cat, Brain Res., 30’ 1971b, 119–135.Google Scholar
  55. NAUTAW’J.B. Central nervous organization and the endocrine motor system. In A.V. Nalbandov, (ed.), Advances in Neuroendocrinology, Univ. of Illinois Press, Urbana, 1963, pp. 5–21.Google Scholar
  56. NAUTA, H.J.W., PRITZ, M.B. & LASEK, R.J. Afferents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method, Brain Res., 67, 1974, 219–238.PubMedCrossRefGoogle Scholar
  57. OLSON, L., B0–0G, L.O. & SEIGER, A. Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine-containing neuron systems in the human fetal brain, Z. Anat. Eotwiukl,- Gescb., 139, 1973, 259–282Google Scholar
  58. PARENT, A. Distribution of monoamine-containing neurons in the brain stem of the frog, Rana temporaria, J. Morph., 139’ 1973u, 67–78.Google Scholar
  59. PARENT, A. Distribution of monoamine-containing nerve terminals in the brain of the painted turtle, Chrysemys pieta, J. ComE, Neur., 148, 1973b, 153–166.Google Scholar
  60. PARENT, A. Demonstration of a catecholaminergic pathway from the midbrain to the strio-amygdaloid complex in the turtle (Chrysemys picta), J. Anat., 114, 1973c, 379–387.Google Scholar
  61. PARENT, A. & POIRIER, L.J. Occurrence and distribution of monoamine-containing neurons in the brain of the painted turtle, Chrysemys picta, J. Anat., I10, 1971, 81–89.Google Scholar
  62. POIRIER, L.J. & SOURKES, T.L. Influence of the substantia nigra on the catecholamine content of the striatum, Brain, 88, 1965, 181–192.PubMedCrossRefGoogle Scholar
  63. RANDRUP, A. & MUNKVAD, I. Stereotyped activities produced by amphetamine in several animal species and man, Psychopharmacol. (Berl.), 11, 1967, 300–310.CrossRefGoogle Scholar
  64. RANDRUP, A. & MUNKVAD, I, Biochemical, anatomical and psychological investigations of stereotyped behaviour induced by amphetamines. In E. Costa and G. Garattini (eds.), Symposium on Amphetamines and Related Drugs, Raven Press, New York, 1970, pp. 695–713.Google Scholar
  65. ROSE, J.E. & WOOLSEY, C. N. The orbitofrontal cortex and its con-nections with the mediodorsal nucleus in rabbit, sheep and cat, Rec. Pub. Ass. Nerv. Mout, Dis., 27, 1948, 210–232.Google Scholar
  66. SIMON, H., LE MOAL, M., GALEY, D. & CARDO, B. Silver impregnation of dopaminergic systems after radiofrequency and 6–0HDA lesions of the rat ventral tegmentum, Brain Res., 115, 1976, 215–231Google Scholar
  67. THIERRY, A.M., STINUS, L., BLANC, G. & GLOWINSKI, J. Some evidence for the existence of dopaminergic neurons in the rat cortex, Brain Res., 50, 1973a, 230–234.PubMedCrossRefGoogle Scholar
  68. THIERRY, A.M., BLANC, G., SOBEL, A., STINUS, L. & GLOWINSKI, J. Dopamine terminals in the rat cortex, Science, 182, 1973b, 499–501.PubMedCrossRefGoogle Scholar
  69. UNGERSTEDT, U. Stereotaxic mapping of the monoamine pathways in the rat brain, Acta physiol. scand., Suppl. 367, 1971, 1–48.Google Scholar
  70. Van Den BERGH, R. Phylogenese und Anatomie des Lobus limbicus. In F. Heppner (ed.), Limbisches System und Epilepsie, Verlag Hans Huber, Bern, 1973, pp. 27–51.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Anders Björklund
  • Olle Lindvall

There are no affiliations available

Personalised recommendations