Direct Measurement of Lateral Mobility

  • David A. Jans
Part of the Molecular Biology Intelligence Unit book series (MBIU)


This chapter will concentrate on fluorescence photobleaching recovery (FBR), also known as fluorescence recovery after photobleaching (FRAP) or fluorescence microphotolysis,1–6 the microscopic technique by which plasma membrane lateral movement can be determined directly. It will deal initially with the basis of fluorescence and the microscopic techniques that enable fluorescence to be visualized and quantified, and then concentrate on lateral mobility measurements themselves in cytosol, and biological and artificial membranes. It will become clear that the lateral movement of molecules in biological membranes is at least two orders of magnitude slower than that in cytosol. Protein lateral mobility is much slower than that of membrane lipids, implying that membrane proteins are normally limited in their movement. The fact that protein movement is restricted means that the lateral diffusion of proteins within the membrane lipid bilayer is rate limiting in terms of signal transduction at the level of the membrane.7,8


Lateral Diffusion Human Leukocyte Antigen Class Fluorescence Recovery After Photobleaching Fluorescence Recovery Mobile Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod D, Koppel DE, Schlessinger J et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 1976; 16: 1055–1069.PubMedCrossRefGoogle Scholar
  2. 2.
    Elson EL, Schlessinger J, Koppel DE et al. Measurement of lateral transport on cell surfaces. Prog Clin Biol Res 1976; 9: 137–147.PubMedGoogle Scholar
  3. 3.
    Schlessinger J, Elson EL. Fluorescence methods for studying membrane dynamics. In: Ehrenstein G, Lecar H, ed. Methods of Experimental Physics. New York: Academic Press, 1982: 197–227.Google Scholar
  4. 4.
    Koppel DE. Fluorescence photobleaching as a probe of translational and rotational motions. In: Shaafi RI, Fernandez SM, ed. Fast Methods in Physical Biochemistry and Cell Biology. Amsterdam: Elsevier-North Holland, 1983: 339–367.Google Scholar
  5. 5.
    Peters R. Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 1986; 864: 305–359.PubMedCrossRefGoogle Scholar
  6. 6.
    Helmreich EJM, Elson EL. Protein and lipid mobility. Adv in Cyclic Nucleotide and Prot Phosphor Res 1984; 18: 1–62.Google Scholar
  7. 7.
    Jans DA. The mobile receptor hypothesis revisited: a mechanistic role for hormone receptor lateral mobility in signal transduction. Biochim Biophys Acta 1992; 1113: 271–276.PubMedCrossRefGoogle Scholar
  8. 8.
    Jans DA, Pavo I. A mechanistic role for polypeptide hormone receptor lateral mobility in signal transduction. Amino Acids 1995; 9: 93–109.Google Scholar
  9. 9.
    Wang Y-L, Taylor DL, eds. Fluorescence Microscopy of Living Cells in Culture Part A. Fluorescent Analogs, Labeling Cells, and Basic Microscopy. Methods in Cell Biology Volume 29. San Diego, New York, Boston, London, Sydney, Tokyo, Toronto. Academic Press, 1989.Google Scholar
  10. 10.
    Wang Y-L, Taylor DL, eds. Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence MicroscopyImagaing and Spectroscopy. Methods in Cell Biology Volume 30. San Diego, New York, Boston, London, Sydney, Tokyo, Toronto. Academic Press, 1989.Google Scholar
  11. 11.
    Matsumoto B, ed. Cell Biological Applications of Confocal Microscopy. Methods in Cell Biology Volume 38. San Di-ego, New York, Boston, London, Sydney, Tokyo, Toronto. Academic Press, 1993.Google Scholar
  12. 12.
    Jans DA, Peters R, Zsigo J et al. The adenylate cyclase-coupled vasopressin V2-receptor is highly laterally mobile in membranes of LLC-PK, renal epithelial cells at physiological temperature. EMBO J 1989; 8 (9): 2431–2438.Google Scholar
  13. 13.
    Jans DA, Peters R, Fahrenholz F. Lateral mobility of the phospholipase-C-activating vasopressin V,-type receptor in A7r5 smooth muscle cells: a comparison with the adenylate cyclase-coupled V2-receptor. EMBO J 1990; 9 (9): 2693–2699.PubMedGoogle Scholar
  14. 14.
    Schlessinger J, Axelrod D, Koppel DE et al. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science 1977; 195: 307–309.PubMedCrossRefGoogle Scholar
  15. 15.
    Jans DA, Resink TJ, Wilson E-L et al. Isolation of a mutant LLC-PK, cell line defective in hormonal responsiveness: a pleiotropic lesion affecting receptor function. Eur J Biochem 1986; 160: 407–412.PubMedCrossRefGoogle Scholar
  16. 16.
    Luzius H, Jans DA, Jans P et al. Isolation and genetic characterization of a renal epithelial cell mutant defective in vasopressin VZ-type receptor binding and function. Exper Cell Res 1991; 195: 478–484.CrossRefGoogle Scholar
  17. 17.
    Yguerabide J, Schmidt JA, Yguerabide EE. Lateral mobility in membranes as detected by fluorescence recovery after photo-bleaching. Biophys J 1982; 40 (1): 69–75.PubMedCrossRefGoogle Scholar
  18. 18.
    Saffman PG, Delbrueck M. Brownian motion in biological membranes. Proc Natl Acad Sci USA 1975; 72: 3111–3113.PubMedCrossRefGoogle Scholar
  19. 19.
    Saffman PG. Lateral and rotational movement in membranes. Fluid Mech 1976; 73: 593–602.CrossRefGoogle Scholar
  20. 20.
    Webb WW, Barak LS, Tank DW et al. Molecular mobility on the cell surface. Biochem Soc Symp 1981(46):191–205.Google Scholar
  21. 21.
    Koppel DE, Sheetz MP. Fluorescence photobleaching does not alter the lateral mobility of erythrocyte membrane glycoproteins. Nature 1981; 293 (5828): 159–161.PubMedCrossRefGoogle Scholar
  22. 22.
    Schlessinger J, Koppel DE, Axelrod D et al. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 1976; 73: 2409–2413.PubMedCrossRefGoogle Scholar
  23. 23.
    Jacobson K, Hou Y, Wojcieszyn J. Evidence for lack of damage during photo-bleaching measurements of the lateral mobility of cell surface components. Biochim Biophys Acta 1978; 433: 215–222.Google Scholar
  24. 24.
    Wolf DE, Edidin M, Dragsten PR. Effect of bleaching light on measurements of lateral diffusion in cell membranes by the fluorescence photobleaching recovery method. Proc Natl Acad Sci USA 1980; 77: 2043–2045.PubMedCrossRefGoogle Scholar
  25. 25.
    Axelrod D. Cell surface heating during fluorescence photobleaching recovery experiments. Biophys J 1977; 18: 129–131.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu E-S, Jacobson K, Szoka F et al. Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry 1977; 17: 5543–5550.CrossRefGoogle Scholar
  27. 27.
    Sheetz MP, Koppel DE. Membrane damage caused by irradiation of fluorescent concanavalin A. Proc Natl Acad Sci USA 1979; 76: 3314–3317.PubMedCrossRefGoogle Scholar
  28. 28.
    Luby-Phelps K, Lanni F, Taylor DL. Behavior of a fluorescent analogue of calmodulin in living 3T3 cells. J Cell Biol 1985; 101 (4): 1245–1256.PubMedCrossRefGoogle Scholar
  29. 29.
    Lang I, Scholz M, Peters R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol 1986; 102(41:1183–1190.Google Scholar
  30. 30.
    Wang YL, Lanni F, McNeil PL et al. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc Natl Acad Sci USA 1982; 70: 4660–4664.CrossRefGoogle Scholar
  31. 31.
    Wojcieszyn JW, Schlegel RA, Wu ES et al. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. Proc Natl Acad Sci USA 1981; 78 (7): 4407–4410.PubMedCrossRefGoogle Scholar
  32. 32.
    Salmon ED, Saxton WM, Leslie RJ et al. Diffusion coefficient of fluorescein-labeled tubulin in the cytoplasm of embryonic cells of a sea urchin: video image analysis of fluorescence redistribution after photobleaching. J Cell Biol 1984; 99 (6): 2157–2164.PubMedCrossRefGoogle Scholar
  33. 33.
    Jacobson K, Wojcieszyn J. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci USA 1984; 81 (21): 6747–6751.PubMedCrossRefGoogle Scholar
  34. 34.
    Rihs H-P, Peters R. Nuclear transport kinetics depend on phosphorylation-sitecontaining sequences flanking the karyophilic signal of the Simian virus 40 T-antigen. EMBO J 1989; 8: 1479–1484.PubMedGoogle Scholar
  35. 35.
    Bell GI. Models for the specific adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 1978; 200: 618–627.PubMedCrossRefGoogle Scholar
  36. 36.
    Bell GI. Theoretical models for cells-cell interactions in immune responses. Dev Cell Biol 1979; 4: 371–392.Google Scholar
  37. 37.
    Stolpen AH, Golan DE, Pober JS. Tumor necrosis factor and immune interferon act in concert to slow the lateral diffusion of proteins and lipids in human endothelial cell membranes. J Cell Biol 1988; 107: 781–789.PubMedCrossRefGoogle Scholar
  38. 38.
    Corbett JD, Golan DE. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies. J Clin Invest 1993; 91 (1): 208–217.PubMedCrossRefGoogle Scholar
  39. 39.
    Bierer BE, Golan DE, Brown CS et al. A monoclonal antibody to LFA-3, the CD2 ligand, specifically immobilizes major histocompatibility complex proteins. Eur J Immunol 1989; 19 (4): 661–665.PubMedCrossRefGoogle Scholar
  40. 40.
    Thatte HS, Bridges KR, Golan DE. ATP depletion causes translational immobilization of cell surface transferrin receptors in K562 cells. J Cell Physiol 1996; 166: 446–452.PubMedCrossRefGoogle Scholar
  41. 41.
    Thatte HS, Bridges KR, Golan DE. Microtubule inhibitors differentially affect translational movement, cell surface expression, and endocytosis of transferrin receptors in K562 cells. J Cell Physiol 1994; 160: 345–357.PubMedCrossRefGoogle Scholar
  42. 42.
    Angelides KJ. Fluorescently labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature 1986; 321 (6065): 63–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Srinivasan Y, Guzikowski AP, Haugland RP et al. Distribution and lateral mobility of glycine receptors on cultured spinal cord neurons. J Neurose 1990; 10: 985–995.Google Scholar
  44. 44.
    Jones OT, Kunze DL, Angelides KJ. Localization and mobility of wconotoxin-sensitive Ca“ channels in hippocampal CAI neurons. Science 1989; 244: 1189–1193.PubMedCrossRefGoogle Scholar
  45. 45.
    Velazquez JL, Thompson CL, Barnes EM Jr et al. Distribution and lateral mobility of GAGA/benzodiazepine receptors on nerve cells. J Neurosci 1989; 9 (6): 2163–2169.PubMedGoogle Scholar
  46. 46.
    Bulow R, Overath P, Davoust J. Rapid lateral diffusion of the variant surface glycoprotein in the coat of Trypanosoma brucei. Biochemistry 1988; 27 (7): 2384–2388.PubMedCrossRefGoogle Scholar
  47. 47.
    Henis YI, Hekman M, Elson EL et al. Lateral diffusion of (3-receptors in membranes of cultured liver cells. Proc Natl Acad Sci USA 1982; 79: 2907–2911.PubMedCrossRefGoogle Scholar
  48. 48.
    Yechiel E, Barenholz Y, Henis YI. Lateral mobility and organization of phospholipids and proteins in rat myocyte membranes. Effects of aging and manipulation of lipid composition. J Biol Chem 1985; 260: 9132–9136.PubMedGoogle Scholar
  49. 49.
    Dragsten PR, Blumenthal R, Handler JS. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 1981; 294: 718–722.PubMedCrossRefGoogle Scholar
  50. 50.
    Koppel DE, Sheetz MP, Schindler M. Matrix control of protein diffusion in biological membranes. Proc Natl Acad Sci USA 1980; 78 (6): 3576–3580.CrossRefGoogle Scholar
  51. 51.
    Henis YI, Elson EL. Inhibition of the mobility of mouse lymphocyte surface immunoglobulins by locally bound concanavalin A. Proc Natl Acad Sci USA 1981; 78 (2): 1072–1076.PubMedCrossRefGoogle Scholar
  52. 52.
    Tank DW, Wu ES, Webb WW. Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol 1982; 92 (1): 207–212.PubMedCrossRefGoogle Scholar
  53. 53.
    Swaisgood M, Schindler M. Lateral diffusion of lectin receptors in fibroblast membranes as a function of cell shape. Exp Cell Res 1989; 180 (2): 515–528.PubMedCrossRefGoogle Scholar
  54. 54.
    Barak LS, Webb WW. Diffusion of low density lipoprotein-receptor complex on human fibroblasts. J Cell Biol 1982; 95: 846–852.PubMedCrossRefGoogle Scholar
  55. 55.
    Paller MS. Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity. J Membr Biol 1994; 142 (1): 127–135.Google Scholar
  56. 56.
    Cowan AE, Myles DG, Koppel DE. Lateral diffusion of the PH-20 protein on guinea pig sperm: evidence that barriers to diffusion maintain plasma membrane domains in mammalian sperm. J Cell Biol 1987; 104: 917–923.PubMedCrossRefGoogle Scholar
  57. 57.
    Schlessinger J, Schechter Y, Cuatrecasas P et al. Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc Natl Acad Sci USA 1978; 75: 5353–5357.PubMedCrossRefGoogle Scholar
  58. 58.
    Axelrod D, Wight A, Webb W et al. Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane. Biochemistry 1978; 17 (17): 3604–3609.PubMedCrossRefGoogle Scholar
  59. 59.
    Hillman GM, Schlessinger J. The lateral diffusion of epidermal growth factor complexed to its surface receptors does not account for the termal sensitivity of patch formation and endocytosis. Biochemistry 1982; 21: 1667–1672.PubMedCrossRefGoogle Scholar
  60. 60.
    Roess DA, Rahman NA, Kenny N. Molecular dynamics of luteinizing hormone receptors on rat luteal cells. Biochim Biophys Acta 1992; 1137: 309–316.PubMedCrossRefGoogle Scholar
  61. 61.
    Angelides KJ, Elmer LW, Loftus D et al. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol 1988; 106 (6): 1911–1925.PubMedCrossRefGoogle Scholar
  62. 62.
    Bloom JA, Webb WW. Lipid diffusibility in the intact erythrocyte membrane. Biophys J 1983; 42 (3): 295–305.PubMedCrossRefGoogle Scholar
  63. 63.
    Roettger BF, Rentsch RU, Hadac EM et al. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell. J Cell Biol 1995; 130: 579–590.PubMedCrossRefGoogle Scholar
  64. 64.
    Schlessinger J, Webb WW, Elson EL. Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature 1976; 264: 550–552.PubMedCrossRefGoogle Scholar
  65. 65.
    Dragsten PR, Henkart P, Blumenthal R et al. Lateral diffusion of surface immunoglobulin, Thy-1 antigen, and a lipid probe in lymphocyte plasma membranes. Proc Nati Acad Sci USA 1979; 76: 5163–5167.CrossRefGoogle Scholar
  66. 66.
    Kwon G, Axelrod D, Neubig RR. Lateral mobility of tetramethylrhodamine (TMR) labelled G protein a and (3y subunits in NG108–15 cells. Cellular Signalling 1994; 6 (6): 663–679.PubMedCrossRefGoogle Scholar
  67. 67.
    de Laat SW, Van der Saag PT, Elson EL et al. Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells. Proc Natl Acad Sci USA 1980; 77: 1526–1528.PubMedCrossRefGoogle Scholar
  68. 68.
    Noda M, Yoon K, Rodan GA et al. High lateral mobility of endogenous and transfected alkaline phosphatase: a phos-phatidylinositol-anchored membrane protein. J Cell Biol 1987; 105 (4): 1671–1677.PubMedCrossRefGoogle Scholar
  69. 69.
    Jesaitis AJ, Yguerabide J. The lateral mobility of the (Na’,K’)-dependent ATPase in Madin-Darby canine kidney cells. J Cell Biol 1986; 102: 1256–1263.PubMedCrossRefGoogle Scholar
  70. 70.
    Magnusson KE, Gustafsson M, Holmgren K et al. Small intestinal differentiation in human colon carcinoma HT29 cells has distinct effects on the lateral diffusion of lipid (ganglioside GM1) and proteins (HLA class 1, HLA class 2, and neoplastic epithelial antigens) in the apical cell membrane. J Cell Physiol 1990; 143 (2): 381–390.PubMedCrossRefGoogle Scholar
  71. 71.
    Kilpatrick-Smith L, Maniara G, Vanderkooi JM et al. Cellular effects of endotoxin in vitro: mobility of endotoxin in the plasma membrane of hepatocytes and neuroblastoma cells. Biochim Biophys Acta 1985; 847 (2): 177–184.PubMedCrossRefGoogle Scholar
  72. 72.
    Vaz W, Goodsaid-Zalduondo F, Jacobson K. Lateral diffusion of lipids and proteins in bilayer membranes. FEBS Lett 1984; 174: 199–207.CrossRefGoogle Scholar
  73. 73.
    Edidin M, Zagyansky Y, Lardner TY. Measurement of membrane protein lateral diffusion in single cells. Science 1976; 191: 466–468.PubMedCrossRefGoogle Scholar
  74. 74.
    Zs Nagy I, Zhang X, Kitani K et al. The influence of dystrophin on lateral diffusion of proteins in sarcolemma of L-185 and C2 myoblasts and mature striated muscle cells of rats and mice, as measured by FRAP technique. Biochem Biophys Res Commun 1995; 215 (1): 67–74.CrossRefGoogle Scholar
  75. 75.
    Schindler M, Holland JF, Hogan M. Lateral diffusion in nuclear membranes. J Cell Biol 1985; 100 (5): 1408–1414.PubMedCrossRefGoogle Scholar
  76. 76.
    Reidler JA, Keller PM, Elson EL et al. A fluorescence photobleaching study of vesicular stomatitis virus infected BHK cells. Modulation of G protein mobility by M protein. Biochemistry 1981; 20 (5): 1345–1349.PubMedCrossRefGoogle Scholar
  77. 77.
    Scullion BF, Hou Y, Puddington L et al. Effects of mutations in three domains of the vesicular stomatitis viral glycoprotein on its lateral diffusion in the plasma membrane. J Cell Biol 1987; 105 (1): 69–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang F, Crise B, Su B et al. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins:towards establishing rules governing the lateral mobility of membrane proteins. J Cell Biol 1991; 115: 75–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Henis YI, Herman-Barhom Y, Aroeti B et al. Lateral mobility of both envelope proteins (F and HN) of Sendai virus in the cell membrane is essential for cell-cell fusion. J Biol Chem 1989; 264: 17119–17125.PubMedGoogle Scholar
  80. 80.
    Fire E, Zwart DE, Roth MG et al. Evidence from lateral mobility studies for dynamic interactions of a mutant influenza hemagglutinin with coated pits. J Cell Biol 1991; 115: 1585–1594.PubMedCrossRefGoogle Scholar
  81. 81.
    Hochman JH, Schindler M, Lee JG et al. Lateral mobility of cytochrome c on intact mitochondrial membranes as determined by fluorescence redistribution after photobleaching. Proc Natl Acad Sci USA 1982; 79 (22): 6866–6870.PubMedCrossRefGoogle Scholar
  82. 82.
    George SK, Xu YH, Benson LA et a1. Cytochrome b5 and a recombinant protein containing the cytochrome b5 hydrophobic domain spontaneously associate with the plasma membrane of cells. Biochim Biophys Acta 1991; 1066 (2): 131–143.PubMedCrossRefGoogle Scholar
  83. 83.
    Poo M, Cone RA. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 1974; 247 (441): 438–441.PubMedCrossRefGoogle Scholar
  84. 84.
    Gupta BD, Williams TP. Lateral diffusion of visual pigments in toad (Bufo marinus) rods and in catfish (Ictalurus punctatus) cones. J Physiol Lond 1990; 430: 483–496.PubMedGoogle Scholar
  85. 85.
    Liebman PA, Entine G. Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 1974; 185 (149): 457–459.PubMedCrossRefGoogle Scholar
  86. 86.
    Maxfield FR, Willingham MC, Haigler HT et al. Binding, surface mobility, internalization, and degradation of rhodamine-labeled a2-macroglobulin. Biochemistry 1981; 20 (18): 5353–5358.PubMedCrossRefGoogle Scholar
  87. 87.
    Maxfield FR, Willingham MC, Pastan I et al. Binding and mobility of the cell surface receptors for 3,3’,5-triiodo-Lthyronine. Science 1981; 211: 63–65.PubMedCrossRefGoogle Scholar
  88. 88.
    Smith PR, Saccomani G, Joe E-H et al. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc Natl Acad Sci USA 1991; 88: 6971–6975.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith PR, Stoner JC, Viggiano SC et al. Effects of vasopressin and aldosterone on the lateral mobility of eptihelial Na- channels in A6 epithelial cells. J Memb Biol 1995; 147 (2): 195–205.CrossRefGoogle Scholar
  90. 90.
    Joe EH, Angelides KJ. Clustering and mobility of voltage-dependent sodium channels during myelination. J Neurosci 1993; 13 (7): 2993–3005.PubMedGoogle Scholar
  91. 91.
    Henis YI, Katzir Z, Shia MA et al. Oligomeric structure of the human asialoglycoprotein receptor: nature and stoichiometry of mutual complexes containing H1 and H2 polypeptides assessed by fluorescence photobleaching recovery. J Cell Biol 1990; 111: 1409–1418.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang F, Schmidt WG, Hou Y et al. Spontaneous incorporation of the glycosyl-phosphatidylinositol-linked protein Thy-1 into cell membranes. Proc Natl Acad Sci USA 1992; 89: 5231–5235.PubMedCrossRefGoogle Scholar
  93. 93.
    Corcao G, Sutcliffe RG, Kusel JR et al. Lateral diffusion of human CD2 wild type and mutants with large deletions in the transmembrane domain. Biochem Biophys Res Commun 1995; 208: 1131–1136.PubMedCrossRefGoogle Scholar
  94. 94.
    Liu SJ, Hahn WC, Bierer BE et al. Intracellular mediators regulate CD2 lateral diffusion and cytoplasmic Cap’ mobilization upon CD2-mediated T cell activation. Biophys J 1995; 68 (2): 459–470.PubMedCrossRefGoogle Scholar
  95. 95.
    Grebenkamper K, Tosi PF, Lazarte JE et al. Modulation of CD4 lateral mobility in intact cells by an intracellularly applied antibody. Biochem J 1995; 312 (1): 251–259.PubMedGoogle Scholar
  96. 96.
    Pal R, Nair BC, Hoke GM et al. Lateral diffusion of CD4 on the surface of a human neoplastic T-cell line probed with a fluorescent derivative of the envelope glycoprotein (gp120) of human immunodeficiency virus type 1 (HIV-1). J Cell Physiol 1991; 147 (2): 326–332.PubMedCrossRefGoogle Scholar
  97. 97.
    Letourneur F, Gabert J, Cosson P et al. A signaling role for the cytoplasmic segment of the CD8 a chain detected under limiting stimulatory conditions. Proc Natl Acad Sci USA 1990; 87: 2339–2343.PubMedCrossRefGoogle Scholar
  98. 98.
    Wier M, Edidin M. Effects of cell density and extracellular matrix on the lateral diffusion of major histocompatibility antigens in cultured fibroblasts. J Cell Biol 1986; 103: 215–222.PubMedCrossRefGoogle Scholar
  99. 99.
    Edidin M, Zuniga MC, Sheetz MP. Truncation mutants define and locate cyto-plasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci USA 1994; 91: 3378–3382.PubMedCrossRefGoogle Scholar
  100. 100.
    Edidin M, Aszalos A, Damjanovich S et al. Lateral diffusion measurements give evidence for association of the Tac peptide of the IL-2 receptor with the T27 peptide in the plasma membrane of HUT-102-B2 T cells. J Immunol 1988; 141: 1206–1210.PubMedGoogle Scholar
  101. 101.
    Hochman JH, Shimizu Y, De Marz R et al. Specific association of fluorescent 132microglobulin with cell surfaces. The affinity of different H-2 and HLA antigens for 32-microglobulin. J Immunol 1988; 140: 2322–2329.PubMedGoogle Scholar
  102. 102.
    Zhang F, Yang B, Odin JA et al. Lateral mobility of Fcy RIIa is reduced by protein kinase C activation. FEBS Lett 1995; 376 (1–2): 77–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Poo H, Krauss JC, Mayo-Bond L et al. Interaction of Fc gamma receptor type IIIB with complement receptor type 3 in fibroblast transfectants: evidence from lateral diffusion and resonance energy transfer studies. J Mol Biol 1995; 247 (4): 597–603.PubMedGoogle Scholar
  104. 104.
    Posner RG, Subramanian K, Goldstein B et al. Simultaneous crosslinking by two nontriggering bivalent ligands causes synergistic signaling of IgE Fc epsilon RI complexes. J Immunol 1995; 155 (7): 3601–3609.PubMedGoogle Scholar
  105. 105.
    Menon AK, Holowka D, Webb WW et al. Clustering, mobility, and triggering activity of small oligomers of immunoglobulin E on rat basophilic leukemia cells. J Cell Biol 1986; 102: 534–540.Google Scholar
  106. 106.
    Menon AK, Holowka D, Webb WW et al. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J Cell Biol 1986; 102: 541–550.PubMedCrossRefGoogle Scholar
  107. 107.
    Mao SY, Varin-Blank N, Edidin M et al. Immobilization and internalization of mutated IgE receptors in transfected cells. J Immunol 1991; 146 (3): 958–966.PubMedGoogle Scholar
  108. 108.
    Gustafsson M, Sundqvist T, Magnusson KE. Lateral diffusion of the secretory component (SC) in the basolateral membrane of the human colonic carcinoma cell line HT29 assessed with fluorescence recovery after photobleaching. J Cell Physiol 1988; 137: 608–611.PubMedCrossRefGoogle Scholar
  109. 109.
    Jacobson K, O’Dell D, August JT. Lateral diffusion of an 80,000-dalton glycoprotein in the plasma membrane of murine fibroblasts: relationships to cell structure and function. J Cell Biol 1984; 99 (5): 1624–1633.PubMedCrossRefGoogle Scholar
  110. 110.
    Duband JL, Nuckolls GH, Ishihara A et al. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J Cell Biol 1988; 107: 1385–1396.PubMedCrossRefGoogle Scholar
  111. 111.
    Paccaud JP, Reith W, Johansson B et al. Role of internalization signals and receptor mobility. J Biol Chem 1993; 268 (31): 23191–23196.PubMedGoogle Scholar
  112. 112.
    Knowles DW, Chasis JA, Evans EA et al. Cooperative action between band 3 and glycophorin A in human erythrocytes: immobilization of band 3 induced by antibodies to glycophorin A. Biophys J 1994; 66 (5): 1726–1732.PubMedCrossRefGoogle Scholar
  113. 113.
    Jacobson K, Ishihara A, Inman R. Lateral diffusion of proteins in membranes. Ann Rev Physiol 1987; 49: 163–175.CrossRefGoogle Scholar
  114. 114.
    Tank DW, Wu ES, Meers PR et al. Lateral diffusion of gramicidin C in phospholipid multibilayers. Effects of cholesterol and high gramicidin concentration. Biophys J 1982; 40 (2): 129–135.PubMedCrossRefGoogle Scholar
  115. 115.
    Tank DW, Wu ES, Meers P et al. Lateral diffusion of gramicidin C in phospholipid multibilayers containing 0–50 mole% cholesterol. Biophys J 1981; 33: 109a.Google Scholar
  116. 116.
    Peters R, Cherry RJ. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations. Proc Natl Acad Sci USA 1982; 79 (14): 4317–4321.PubMedCrossRefGoogle Scholar
  117. 117.
    Vaz WL, Criado M, Madeira VM et al. Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bi-layers. A study using fluorescence recovery after photobleaching. Biochemistry 1982; 21 (22): 5608–5612.PubMedCrossRefGoogle Scholar
  118. 118.
    Criado M, Vaz WL, Barrantes FJ et al. Translational diffusion of acetylcholine receptor (monomeric and dimeric forms) of Torpedo marmorata reconstituted into phospholipid bilayers studied by fluorescence recovery after photobleaching. Biochemistry 1982; 21 (23): 5750–5755.PubMedCrossRefGoogle Scholar
  119. 119.
    Kapitza HG, Ruppel DA, Galla HJ et al. Lateral diffusion of lipids and glycophorin in solid phosphatidylcholine bilayers. The role of structural effects. Biophys J 1984; 45 (3): 577–587.PubMedCrossRefGoogle Scholar
  120. 120.
    Wu E-S, Low PS, Webb WW. Lateral diffusion of glycophorin reconstituted into phospholipid multibilayers. Biophys J 1981; 33: 109a.Google Scholar
  121. 121.
    Schlessinger J, Barak LS, Hammes GG et al. Mobility and distribution of a cell surface glycoprotein and its interaction with other membrane components. Proc Natl Acad Sci USA 1977; 74: 2909–2913.PubMedCrossRefGoogle Scholar
  122. 122.
    Peacock JS, Barisas BG. Photobleaching recovery studies of T-independent antigen mobility on antibody-bearing liposomes. J Immunol 1983; 131 (6): 2924–2929.PubMedGoogle Scholar
  123. 123.
    Chan PY, Lawrence MB, Dustin ML et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J Cell Biol 1991; 115 (1): 245–255.PubMedCrossRefGoogle Scholar
  124. 124.
    Derzko Z, Jacobson K. Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry 1980; 19 (26): 6050–6057.PubMedCrossRefGoogle Scholar
  125. 125.
    Zakharova OM, Rosenkranz AA, Sobolev AS. Modification of fluid lipid and mobile protein fractions of reticulocyte plasma membranes affects agonist-stimulated adenylate cyclase. Application of the percolation theory. Biochim Biophys Acta 1995; 1236: 177–184.PubMedCrossRefGoogle Scholar
  126. 126.
    Tsuji A, Ohnishi, S. Restriction of the lateral motion of Band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 1986; 25: 6133–6139.PubMedCrossRefGoogle Scholar
  127. 127.
    Sheetz MP, Schindler M, Koppel DE. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 1980; 285: 510–512.PubMedCrossRefGoogle Scholar
  128. 128.
    Golan DE, Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photo-bleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci USA 1980; 77: 2537–2541.PubMedCrossRefGoogle Scholar
  129. 129.
    Sheetz MP, Febbroriello P, Koppel DE. Triphosphoinositide increases glycoprotein lateral mobility in erythrocyte membranes. Nature 1982; 297: 424–425.CrossRefGoogle Scholar
  130. 130.
    Henis YL, Rimon G, Felder S. Lateral mobility of phospholipids in turkey erythrocytes. Implications for adenylate cyclase activation. J Biol Chem 1982; 257: 1407–1411.PubMedGoogle Scholar
  131. 131.
    Kapitza HG, Sackmann E. Local measurement of lateral motion in erythrocyte membranes by photobleaching technique. Biochim Biophys Acta 1980; 595: 56–64.PubMedCrossRefGoogle Scholar
  132. 132.
    Richter C, Winterthalter, KH, Cherry RJ. Rotational diffusion of cytochrome P-450 in rat liver microsomes. FEBS Lett 1979; 102: 151–154.PubMedCrossRefGoogle Scholar
  133. 133.
    Peters, R. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Reports 1981; 5: 733–760.CrossRefGoogle Scholar
  134. 134.
    Eisinger J, Halperin B. Effect of spatial variation in membrane diffusibility and solubility on the lateral transport of membrane components. Biophys J 1986; 50: 513–521.PubMedCrossRefGoogle Scholar
  135. 135.
    Nigg EA, Cherry RJ. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci USA 1980; 77: 4702–4706.PubMedCrossRefGoogle Scholar
  136. 136.
    Cherry RJ, Buerkli A, Busslinger M et al. Rotational diffusion of band 3 proteins in the human erythrocyte cytoplasmic membrane. Nature 1976; 263: 389–393.PubMedCrossRefGoogle Scholar
  137. 137.
    Bennett V. The molecular basis for membrane-cytoskeleton association in human erythrocytes. J Cell Biochem 1982; 18: 49–65.PubMedCrossRefGoogle Scholar
  138. 138.
    Wey C L, Cone R, Edidin M. Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photo-bleaching and recovery. Biophys J 1981; 33: 225–232.PubMedCrossRefGoogle Scholar
  139. 139.
    Poo, MM. Mobility and localization of proteins in excitable membranes. Annu Rev Neurosci 1985; 8: 369–406.PubMedCrossRefGoogle Scholar
  140. 140.
    McCloskey MA, Liu ZY, Poo MM. Lateral electromigration and diffusion of Fc epsilon receptors on rat basophilic leukemia cells: effects of IgE binding. J Cell Biol 1984; 99 (3): 778–787.PubMedCrossRefGoogle Scholar
  141. 141.
    Tank DW, Fredericks WJ, Barak LS et al. Electric field-induced redistribution and postfield relaxation of low density lipoprotein receptors on cultured human fibroblasts. J Cell Biol 1985; 101 (1): 148–157.PubMedCrossRefGoogle Scholar
  142. 142.
    Giugni TD, Braslau DL, Haigler HT. Electric field-induced redistribution and postfield relaxation of epidermal growth factor receptors on A431 cells. J Cell Biol 1987; 104 (5): 1291–1297.PubMedCrossRefGoogle Scholar
  143. 143.
    Poo M. Rapid lateral diffusion of functional A Ch receptors in embryonic muscle cell membrane. Nature 1982; 295 (5847): 332–334.PubMedCrossRefGoogle Scholar
  144. 144.
    Hicks BW, Angelides KJ. Tracking movements of lipids and Thyl molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with manometer scale precision. J Membr Biol 1995; 144 (3): 231–244.PubMedGoogle Scholar
  145. 145.
    Sako Y, Kusumi A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J Cell Biol 1995; 129 (6): 1559–1574.PubMedCrossRefGoogle Scholar
  146. 146.
    Edidin M, Kuo SC, Sheetz MP. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science 1991; 254: 1379–1382.PubMedCrossRefGoogle Scholar
  147. 147.
    Ziomek CA, Schulman S, Edidin M. Redistribution of membrane proteins in isolated mouse intestinal cells. J Cell Biol 1980; 86: 849–857.PubMedCrossRefGoogle Scholar

Copyright information

© R.G. Landes Company 1997

Authors and Affiliations

  • David A. Jans
    • 1
  1. 1.John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia

Personalised recommendations