Skip to main content

Introduction to the Mobile Receptor Hypothesis

  • Chapter
The Mobile Receptor Hypothesis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 276 Accesses

Abstract

The idea that proteins float freely within the lipid bilayer of biological membranes gained initial impetus through the formulation of the “fluid mosaic” model in the early 1970s.1 Based on electron microscopy and freeze-fracture analysis as well as a number of other studies, the structure of biological membranes was purported to be and is still believed to be as shown in Figure 1.1: “dissolved” proteins float within the “sea” of membrane lipid. This includes integral membrane proteins, that is, proteins that completely traverse the lipid bilayer sometimes more than once such as membrane receptors, as well as peripheral membrane proteins such as the guanosine-triphosphate (GTP) binding protein (“G-protein”) subunits and cell-cell recognition molecules such as LFA-2 (lymphocyte function-associated antigen-2), which are only associated with the membrane and do not traverse it. They are linked to the lipid bilayer through a variety of covalent modifications, such as glycosyl phosphatidylinositol anchors, myristoyl and palmitoyl fatty acid linkages, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175 (23): 720–731.

    Article  PubMed  CAS  Google Scholar 

  2. Raff MC, De Petris S. Movement of lymphocyte surface antigens and receptors: the fluid nature of the lymphocyte plasma membrane and its immunological significance. Fed Proc 1973; 32 (1): 48–54.

    PubMed  CAS  Google Scholar 

  3. Frye CD, Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 1970; 7 (2): 313–335.

    Google Scholar 

  4. Cuatrecasas P. Membrane receptors. Annu Rev Biochem 1974; 43: 169–214.

    Article  PubMed  CAS  Google Scholar 

  5. Jacobs S Cuatrecasas P. The mobile receptor hypothesis and “cooperativity” of hormone binding. Application to insulin. Biochim Biophys Acta. 1976; 433 (3): 482–495.

    Article  PubMed  CAS  Google Scholar 

  6. Gitler C. Plasticity of biological membranes. Annu Rev Biophys Bioeng 1972; 1: 51–92.

    Article  PubMed  CAS  Google Scholar 

  7. Radda GK. Enzyme and membrane conformation in biochemical control. Biochem J 1971; 122 (4): 385–396.

    PubMed  CAS  Google Scholar 

  8. Kahn CR. Membrane receptors for hormones and neurotransmitters. J Cell Biol 1976; 70: 261–286.

    Article  PubMed  CAS  Google Scholar 

  9. Cassel D, Selinger Z. Mechanism of adenylate activation through the 13-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci USA 1978; 75 (9): 4155–4159.

    Article  PubMed  CAS  Google Scholar 

  10. Craig SW, Cuatrecasas P. Mobility of cholera toxin receptors on rat lymphocyte membranes. Proc Natl Acad Sci USA 1975; 72 (10): 3844–3848.

    Article  PubMed  CAS  Google Scholar 

  11. Bennett V, Cuatrecasas P. Mechanism of activation of adenylate cyclase by Vibrio cholerae enterotoxin. J Memb Biol 1975; 22 (1–2): 29–52.

    Article  CAS  Google Scholar 

  12. Sahyoun N, Cuatrecasas P. Mechanism of activation of adenylate cyclase by cholera toxin. Proc Natl Acad Sci USA 1975; 72 (9): 3438–3442.

    Article  PubMed  CAS  Google Scholar 

  13. Bennett V, O’Keefe E, Cuatrecasas P. Mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor-adenylate cyclase interactions. Proc Natl Acad Sci USA 1975; 72 (1): 33–37.

    Article  PubMed  CAS  Google Scholar 

  14. Neer EJ. The size of adenylate cyclase. J Biol Chem 1974; 249 (20): 6527–6531.

    PubMed  CAS  Google Scholar 

  15. Craig SW, Cuatrecasas P. Immunological probes into the mechanism of cholera toxin action. Immunol Commun 1976; 5 (5): 387–400.

    PubMed  CAS  Google Scholar 

  16. Freychet P, Laudat, MH; Laudat G et al. Impairment of insulin binding to the fat cell membrane in the obese hypoglycemic mouse. FEBS Lett 1972; 25: 339–342.

    Article  PubMed  CAS  Google Scholar 

  17. Kono T, Barham FW. Effects of insulin on the levels of adenosine 3’:5’-monophosphate and lipolysis in isolated rat epididymal fat cells. J Biol Chem 1973; 248 (21): 7417–7426.

    PubMed  CAS  Google Scholar 

  18. Megyesi K, Kahn CR, Roth J et al. The NSILA-s receptor in liver plasma membranes. Characterization and comparison with the insulin receptor. J Biol Chem 1975; 250 (23): 8990–8996.

    PubMed  CAS  Google Scholar 

  19. Kono T, Barham FW. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsintreated fat cells. J Biol Chem 1971; 246 (20): 6210–6216.

    PubMed  CAS  Google Scholar 

  20. Huhtaniemi IT, Clayton RN, Catt KJ. Gonadotropin binding and Leydig cell activation in the rat testis in vivo. Endocrinology 1982; 111 (3): 982–987.

    Article  PubMed  CAS  Google Scholar 

  21. Goldfine ID, Gardner JD, Neville DM Jr. Insulin action in isolated rat thymocytes. I. Binding of 125 I-insulin and stimulation of alpha-aminoisobutyric acid transport. J Biol Chem 1972; 247 (21): 6919–6926.

    PubMed  CAS  Google Scholar 

  22. Hollenberg MD, Cuatrecasas P. Insulin and epidermal growth factor. Human fibroblast receptors related to deoxyribonucleic acid synthesis and amino acid uptake. J Biol Chem 1975; 250: 3845–3853.

    PubMed  CAS  Google Scholar 

  23. Wicks WD. Induction of hepatic enzymes by adenosine 3’,5’-monophosphate in organ culture. J Biol Chem 1969; 244: 3941–3950.

    PubMed  CAS  Google Scholar 

  24. Hsueh AJ, Dufau ML, Catt KJ. Gonadotropin-induced regulation of luteinizing hormone receptors and desensitization of testicular 3’:5’-cyclic AMP and testosterone responses. Proc Natl Acad Sci USA 1977; 74 (2): 592–595.

    Article  PubMed  CAS  Google Scholar 

  25. Moyle WR, Lee EY, Bahl OP et al. New method of quantifying ligand binding based on measurement of an induced response. Am J Physiol 1977; 232 (3): E274 - E285.

    PubMed  CAS  Google Scholar 

  26. Orly J, Schramm M. Fatty acids as modulators of membrane functions; catecholamine-activated adenylate cyclase of the turkey erythrocyte. Proc Natl Acad Sci USA 1975; 72: 3433–3437.

    Article  PubMed  CAS  Google Scholar 

  27. Brandt DR, Ross EM. Catecholamine-stimulated GTPase cycle; multiple sites of regulation by ß-adrenergic recceptor and Mgt’ studied in reconstituted receptor-G, vesicles. J Biol Chem 1986; 261: 1656–1664.

    PubMed  CAS  Google Scholar 

  28. De Haen C. The non-stoichiometric floating receptor model for hormone sensitive adenylyl cyclase. J Theor Biol 1976; 58: 383–400.

    Article  PubMed  Google Scholar 

  29. Perkins JP. Adenyl cyclase. Adv Cyclic Nucleotide Res 1973; 3: 1–64.

    PubMed  CAS  Google Scholar 

  30. Jans DA. The mobile receptor hypothesis revisited: a mechanistic role for hormone receptor lateral mobility in signal transduction. Biochim Biophys Acta 1992; 1113: 271–276.

    Article  PubMed  CAS  Google Scholar 

  31. Jans DA, Pavo I. A mechanistic role for polypeptide hormone receptor lateral mobility in signal transduction. Amino Acids 1995; 9: 93–109.

    CAS  Google Scholar 

  32. Helmreich EJM, Elson EL. Protein and lipid mobility. Adv in Cyclic Nucleotide and Prot Phosphor Res 1984; 18: 1–62.

    CAS  Google Scholar 

  33. Peters R. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep 1981; 5 (8): 733–760.

    Article  PubMed  CAS  Google Scholar 

  34. Jans DA. Nuclear signaling pathways for extracellular ligands and their membrane-integral receptors? FASEB J 1994; 8: 841–847.

    PubMed  CAS  Google Scholar 

  35. Schlessinger J. Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 1988; 13: 443–447.

    Article  PubMed  CAS  Google Scholar 

  36. Schlessinger J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry 1989; 27: 3119–3123.

    Article  Google Scholar 

  37. Jans DA, Peters R, Zsigo J et al. The adenylate cyclase-coupled vasopressin V2-receptor is highly laterally mobile in membranes of LLC-PK, renal epithelial cells at physiological temperature. EMBO J 1989; 8 (9): 2431–2438.

    Google Scholar 

  38. Jans DA, Peters R, Fahrenholz F. Lateral mobility of the phospholipase-C-activating vasopressin V1-type receptor in A7r5 smooth muscle cells: a comparison with the adenylate cyclase-coupled V2-receptor. EMBO J 1990; 9 (9): 2693–2699.

    PubMed  CAS  Google Scholar 

  39. Jans DA, Peters R, Jans P et al. Ammonium chloride affects receptor number and lateral mobility of the vasopressin V2-type receptor in the plasma membrane of LLC-PK, renal epithelial cells: role of the cytoskeleton. Exper Cell Res 1990; 191: 121–128.

    Article  CAS  Google Scholar 

  40. Jans DA, Peters R, Jans P et al. Vasopressin V2-receptor mobile fraction and ligand-dependent adenylate cyclase-activity are directly correlated in LLC-PK, renal epithelial cells. J Cell Biol 1991; 114 (1): 53–60.

    Article  PubMed  CAS  Google Scholar 

  41. Pavo I, Jans DA, Peters R et al. A vasopressin antagonist that binds to the V2-receptor of LLC-PK, renal epithelial cells is highly laterally mobile but does not effect ligand-induced receptor immobilization. Biochim Biophys Acta 1994; 1223: 240–246.

    Article  PubMed  CAS  Google Scholar 

  42. Zakharova OM, Rosenkranz AA, Sobolev AS. Modification of fluid lipid and mobile protein fractions of reticulocyte plasma membranes affects agonist-stimulated adenylate cyclase. Application of the percolation theory. Biochim Biophys Acta 1995; 1236: 177–184.

    Article  PubMed  Google Scholar 

  43. Taga T, Kishimoto T. Cytokine receptors and signal transduction. FASEB J 1992; 6: 3387–3396.

    PubMed  CAS  Google Scholar 

  44. Stomski FC, Sun Q, Bagley CJ et al. Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor alpha-and beta-chain heterodimerization, which is required for receptor activation but not high-affinity binding. Mol Cell Biol 1996; 16 (6): 3035–3046.

    PubMed  CAS  Google Scholar 

  45. Posner RG, Subramanian K, Goldstein B et al. Simultaneous cross-linking by two nontriggering bivalent ligands causes synergistic signaling of IgE Fc epsilon RI complexes. J Immunol 1995; 155 (7): 3601–3609.

    PubMed  CAS  Google Scholar 

  46. Menon AK, Holowka D, Webb WW et al. Clustering, mobility, and triggering activity of small oligomers of immunoglobulin E on rat basophilic leukemia cells. J Cell Biol 1986; 102: 534–540.

    CAS  Google Scholar 

  47. Menon AK, Holowka D, Webb WW et al. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J Cell Biol 1986; 102: 541–550.

    Article  PubMed  CAS  Google Scholar 

  48. Liu SJ, Hahn WC, Bierer BE et al. Intracellular mediators regulate CD2 lateral diffusion and cytoplasmic Cat` mobilization upon CD2-mediated T cell activation. Biophys J 1995; 68 (2): 459–470.

    Article  PubMed  CAS  Google Scholar 

  49. Chan PY, Lawrence MB, Dustin ML et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J Cell Biol 1991; 115 (1): 245–255.

    Article  PubMed  CAS  Google Scholar 

  50. Duband J-L, Nuckolls GH, Ishihara A et al. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J Cell Biol 1988; 107: 1385–1396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Jans, D.A. (1997). Introduction to the Mobile Receptor Hypothesis. In: The Mobile Receptor Hypothesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0680-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0680-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0682-6

  • Online ISBN: 978-1-4757-0680-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics