Influence of γ-Glutamyl Transpeptidase Inactivation on the Status of Extracellular Glutathione and Glutathione Conjugates

  • Donald J. Reed
  • William W. Ellis
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Glutathione-S-transferases, which catalyze the conjugation of GSH* with a large number of electrophilic chemicals, have been studied extensively as indicated by the recent review of Chasseaud, 1979. Neither the intermediary fate of these glutathione-Sconjugates nor the extent of extrahepatic sites for the initial hydrolytic reaction catalyzed by γ-glutamyl transpeptidase (EC 2.3. 2.2) is well understood. Biliary excretion of glutathione-Sconjugates from the liver can be quantitative in some instances (Wahlländer and Sies, 1979). While GSH may be released from the liver to the systemic circulation, both GSH and GSSG appear to be excreted via the bile (Sies et al., 1978). A majority of the systemic glutathione appears to be degraded extracellularly by the kidney (Hahn et al., 1978; Häberle et al., 1979). In contrast, biliary glutathione and glutathioné-S-conjugates may be substrates for γ-glutamyl transpeptidase located in canalicular plasma membranes, plasma membrane of biliary duct epithelial cells (Rutenberg et al., 1969; Tanaka, 1974) and intestinal mucosal cells (Grafström et al., 1980).


Total Glutathione Ethacrynic Acid Glutathione Conjugate Mercapturic Acid Diethyl Maleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L., Meck, R. Yunis, A., 1980, The inhibition of y-glutamyl transpeptidase from human pancreatic carcinoma cells by (aS, 5S)-a-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501), Res. Commun. Chem. Pathol. Pharmacol. 27: 175.Google Scholar
  2. Barnhart, J. L., Combes, B., 1978, Choleresis associated with metabolism and biliary excretion of diethyl maleate in the rat and dog, J. Pharmacol. Exptl. Therap. 206: 614.Google Scholar
  3. Bartoli, G. M., Häberle, D. and Sies, H., 1978, Glutathione efflux from perfused rat liver and its relation to glutathione uptake by the kidney, in Functions of Glutathione in Liver and Kidney, Sies, H. and Wendel, A., eds., Springer-Verlag, Berlin, Heidelberg, New York, pp. 27–31.Google Scholar
  4. Bartoli, G. M. and Sies, H., 1978, Reduced and oxidized glutathione efflux from liver, FEES Lett. 86: 89.CrossRefGoogle Scholar
  5. Chasseaud, L. F., 1979, The role of glutathione and glutathione Stransferases in the metabolism of chemical carcinogens and other electrophilic agents, Adv. in Cancer Res. 29: 175.Google Scholar
  6. Fischer, G. A. and Sartorelli, A. C., 1964, Development, maintenance and assay of drug resistance, Methods in Medical Res. 10: 247.Google Scholar
  7. Grafström, R., Stead, A. H. and Orrenius, S., 1980, Metabolism of extracellular glutathione in rat small-intestinal mucosa, Eur. J. Biochem. 106: 571.PubMedCrossRefGoogle Scholar
  8. Griffith, O. W. and Meister, A., 1979, Translocation of intracellular glutathione to membrane-bound y-glutamyl transpeptidase as a discrete step in the y-glutamyl cycle: glutathionuria after inhibition of transpeptidase, Proc. Natl. Acad. Sci. USA 76: 268.PubMedCrossRefGoogle Scholar
  9. Griffith, O. W. and Tate, S. S., 1980, The apparent glutathione oxidase activity of y-glutamyl transpeptidase, J. Biol. Chem. 255: 5011.PubMedGoogle Scholar
  10. Häberle, D., Wahlländer, A. and Sies, H., 1979, Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anaesthetized rats, FEES Lett. 108: 335.CrossRefGoogle Scholar
  11. Hahn, R., Wendel, A. and Flohé, L., 1978, The fate of extracellular glutathione in the rat, Biochim. Biophys. Acta 539: 324.PubMedCrossRefGoogle Scholar
  12. Jones, D. P., Sundby, G.-B., Ormstad, K. and Orrenius, S., 1979a, Use of isolated kidney cells for study of drug metabolism, Biochem. Pharmacol. 28: 929.PubMedCrossRefGoogle Scholar
  13. Jones, D. P., Moldéus, P., Stead, A. H., Ormstad, K., Jörnvall, H. and Orrenius, S., 1979b, Metabolism of glutathione and a glutathione conjugate by isolated kidney cells, J. Biol. Chem. 254: 2787.PubMedGoogle Scholar
  14. Klaassen, C. D. and Fitzgerald, T. J., 1974, Metabolism and biliary excretion of ethacrynic acid, J. Pharmacol. Exptl. Therap. 191: 548.Google Scholar
  15. Lindstrom, T. D., Anders, M. W. and Remmer, H., 1978, Effect of phenobarbital and diethyl maleate on carbon tetrachloride toxicity in isolated rat hepatocytes, Exp. Mol. Pathol. 28: 48.PubMedCrossRefGoogle Scholar
  16. McIntyre, T. M. and Curthoys, N. P., 1979, Comparison of the hydrolytic and transfer activities of rat renal y-glutamyltranspeptidase, J. Biol. Chem. 254: 6499.PubMedGoogle Scholar
  17. Reed, D. J., Ellis, W. W. and Meck, R. A., 1980a, The inhibition of y-glutamyl transpeptidase and glutathione metabolism of isolated rat kidney cells by L-(aS,5S)-a-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501), Biochem. Biophys. Res. Commun. 94: 1273.PubMedCrossRefGoogle Scholar
  18. Reed, D. J., Babson, J. R., Beatty, P. W., Brodie, A. E., Ellis, W. W., and Potter, D. W., (1980b), HPLC analysis of nanomole levels of glutathione, glutathione disulfide and related thiols and disulfides, Analytical Biochem. 106: 55.CrossRefGoogle Scholar
  19. Rutenburg, A. M., Kim, H., Fischbein, J. W., Hanker, J. S., Wasserkrug, H. L., and Seligman, A. M., 1969, Histochemical and ultrastructural demonstration of y-glutamyltranspeptidase activity, J. Histochem. Cytochem. 17: 517.PubMedCrossRefGoogle Scholar
  20. Schulman, J. D., Goodman, S. I., Mace, J. W., Patrick, A. D., Tietze, F. and Butler, E. J., 1975, Glutathionuria: Inborn error of metabolism due to tissue deficiency of gamma-glutamyl transpeptidase, Biochem. Biophys. Res. Commun. 65: 68.PubMedCrossRefGoogle Scholar
  21. Sies, H., Wahlländer, A., Waydhas, Ch., 1978, Properties of glutathione disulfide (GSS) and glutathione-S-conjugate released from perfused rat liver, in “Functions of Glutathione in Liver and Kidney”, Sies, H. and Wendel, A., eds., Springer-Verlag, Berlin, Heidelberg, New York, pp. 120–126.Google Scholar
  22. Smith, B. R. and Bend, J. R., 1979, Metabolism and toxicity of benzo(a)pyrene-4,5-oxide in the isolated perfused rat liver, Toxicol. Appl. Pharmacol. 49: 313.PubMedCrossRefGoogle Scholar
  23. Tanaka, M., 1974, A histochemical study of the activity of y-glutamyl transpeptidase in liver disease, Acta Pathol. Jap. 24: 651.Google Scholar
  24. Tate, S. S. and Orlando, J., 1979, Conversion of glutathione to glutathione disulfide, a catalytic function of y-glutamyl transpeptidase, J. Biol. Chem. 254: 5573.PubMedGoogle Scholar
  25. Wahlländer, A. and Sies, H., 1979, Glutathione S-conjugate formation from 1-chloro-2,4-dinitrobenzene and biliary S-conjugate excretion in the perfused rat liver, Eur. J. Biochem. 96: 441.PubMedCrossRefGoogle Scholar
  26. Whelan, G., Hoch, J. and Combes, B., 1970, A direct assessment of the importance of. conjugation for biliary transport of sulfobromophthalein sodium, J. Lab. Clin. Med. 75: 542.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Donald J. Reed
    • 1
  • William W. Ellis
    • 1
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations