One of the most important reactions of epoxides appears to be the covalent binding to DNA which can lead to mutagenicity and is strongly suspected to be the primary lesion ultimately leading to initiation of cancer (Miller and Miller, 1974; Oesch, 1973; Jerina and Daly, 1974; Sims and Grover, 1974; Heidelberger, 1975; Gelboin et al., 1972). This review first describes structure-activity relationships for the mutagenicity of some epoxides and then outlines some findings on the metabolic control of the concentration of such epoxides by a number of enzymes.


Polycyclic Aromatic Hydrocarbon Mutagenic Activity Epoxide Hydrolase Reactive Metabolite Styrene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arias, M., and Jakoby, W. B., 1976, “Glutathione: Metabolism and Function,” Raven Press, New York.Google Scholar
  2. Bend, J. R., Ben-Zvi, Z., Van Anda, H., Dansette, P. M., and Jerina, D. M., 1976, Hepatic and extrahepatic glutathione S-transferase activity toward several arene oxides and epoxides in the rat, in: “Polynuclear Aromatic Hydrocarbons,” R. Freudenthal and P. W. Jones, eds., Raven Press, New York.Google Scholar
  3. Bentley, P., and Oesch, F., 1975, Purification of rat liver epoxide hydratase to apparent homogeneity, FEBS Lett. 59: 291.Google Scholar
  4. Bentley, P., Oesch, F., and Glatt, H. R., 1977, Dual role of epoxide hydratase in both activation and inactivation of benzo[a]pyrene, Arch. Toxicol. 39:65.Google Scholar
  5. Bicker, M., Glatt, H. R., Platt, K. L., Avnir, D., Ittah, Y., Blum, J., and Oesch, F., 1979, Mutagenicity of phenanthrene and phenanthrene K-region derivates, Mutat. Res., 66: 337.Google Scholar
  6. Friedberg, T., Bentley, P., Stasiecki, P., Glatt, H. R., Raphael, D., and Oesch, F., 1979, The identification, solubilization, and characterization of microsome associated glutathione S-transferases, J. Biol. Chem. 254:12028.Google Scholar
  7. Gelboin, H. V., Kinoshita, N., and Wiebel, F., 1972, Microsomal hydroxylases: Induction and role in polycyclic hydrocarbon carcinogenesis and toxicity, Fed. Proc. 31:1298.Google Scholar
  8. Glatt, H. R., Vogel, K., Bentley, P., Sims, P., and Oesch, F., 1980, Effects of enzyme induction, pure epoxide hydrolase and dihydrodiol dehydrogenase on the mutagenicity of benz(a]anthracene, 7,12-dimethylbenz[a]anthracene and the twelve monomethylated benz[a]anthracenes in the Ames test, Cancer Res. submitted.Google Scholar
  9. Glatt, H. R., and Oesch, F., 1977, Inactivation of electrophilic metabolites by glutathione S-transferase and limitation of the system due to subcellular localization, Arch. Toxicol. 39:87.Google Scholar
  10. Glatt, H. R., Vogel, K., Bentley, P., and Oesch, F., 1979a, Reduction of benzo[a]pyrene mutagenicity by dihydrodiol dehydrogenase, Nature 277: 319.Google Scholar
  11. Glatt, H. R., Ohlsson, A., Agurell, S., and Oesch, F., 1979b, A1- Tetrahydrocannabinol and 1a,2a-epoxyhexahydrocannabinol: mutagenicity investigation in the Ames test, Mutat. Res., 66: 329.Google Scholar
  12. Heidelberger, C., 1975, Chemical carcinogenesis, Ann. Rev. Biochem. 44:79.Google Scholar
  13. Hulbert, P. B., 1975, Carbonium ion as ultimate carcinogen of polycyclic aromatic hydrocarbons, Nature 256: 146.Google Scholar
  14. Jerina, D. M., and Daly, J. W., 1974, Arene oxides: a new aspect of drug metabolism, Science 185: 573.Google Scholar
  15. Jerina, D. M., and Lehr, R., 1977, The bay-region theory: a quantum mechanical approach to aromatic hydrocarbon-induced carcinogenicity, in: “Microsomes and Drug Oxidations,” V. Ullrich, I. Roots, A. G. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds., Pergamon Press, Oxford.Google Scholar
  16. Jung, R., Beermann, D., Glatt, H. R., and Oesch, F., Mutagenicity of structurally related oxiranes: derivatives of benzene and its hydrogenated congeners, Mutat. Res. in press.Google Scholar
  17. Miller, E. C., and Miller, J. A., 1974, Biochemical mechanisms of chemical carcinogenesis, in: “Molecular Biology of Cancer,” H. Busch, ed., Academic Press, New York.Google Scholar
  18. Morgenstern, R., DePierre, J. W., and Ernster, L., 1979, Activation of microsomal glutathione S-transferase activity by sulfhydryl reagents, Biochem. Biophys. Res. Commun. 87:657.Google Scholar
  19. Mumby, S. M., and Hammock, B. D., 1979, Substrate selectivity and stereochemistry of enzymatic epoxide hydration in the soluble fraction of mouse liver, Pestic. Biochem. Physiol. 11:275.Google Scholar
  20. Nebert, D. W., Robinson, J. R., Niwa, A., Kumaki, K., and Poland, A. P., 1975, Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse, J. Cell Physiol. 85:393.Google Scholar
  21. Oesch, F., 1973, Mammalian epoxide hydrases: inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds, Xenobiotica 3: 305.Google Scholar
  22. Oesch, F., 1974, Purification and specificity of a human microsomal epoxide hydratase, Biochem. J. 139:77.Google Scholar
  23. Oesch, F., Kaubisch, N., Jerina, D. M., and Daly, J. W., 1971, Hepatic epoxide hydrase: structure-activity relationships for substrates and inhibitors, Biochemistry 10: 4858.Google Scholar
  24. Oesch, F., Bentley, P., and Glatt, H. R., 1977a, Epoxide hydratase: purification to apparent homogeneity as a specific probe for the relative importance of epoxides among other reactive metabolites, in: “Biological Reactive Intermediates,” D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds., Plenum Press, New York.Google Scholar
  25. Oesch, F., Glatt, H. R., and Schmassmann, H., 1977b, The apparent ubiquity of epoxide hydratase in rat organs, Biochem. Pharmacol. 26:603.Google Scholar
  26. Oesch, F., and Golan, M., 1980, Specificity of mouse livercytosolic epoxide hydrolase for K-region epoxides derived from polycyclic aromatic hydrocarbons, Cancer Lett. 9: 169.Google Scholar
  27. Sims, P., 1970, Qualitative and quantitative studies on the metabolism of a series of aromatic hydrocarbons by rat-liver preparations, Biochem. Pharmacol. 19:795.Google Scholar
  28. Sims, P., and Grover, P. L., 1974, Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis, Adv. Cancer Res. 20:165.Google Scholar
  29. Sims, P., Grover, P. L., Swaisland, A., Pal, K., and Hewer, A., 1974, Metabolic activation of benzo[a]pyrene proceeds by a diol-epoxide, Nature 252: 326.Google Scholar
  30. Stasiecki, P., Oesch, F., Bruder, G., Jarasch, E.-D., and Franke, W. W., 1980, Distribution of enzymes involved in metabolism of polycyclic aromatic hydrocarbons among rat liver endomembranes and plasma membranes, Eur. J. Cell Biol. 21:79.Google Scholar
  31. Vogel, E., Beermann, D., Balci, E., and Altenbach, H.-J., 1976, Oxepin-2,7-dialdehyd, Tetrahedron Lett. 1167.Google Scholar
  32. Vogel, E., and Günther, H., 1976, Benzoloxid-Oxepin-Valenztautomerie, Angew. Chem. 79:429.Google Scholar
  33. Vogel, K., Bentley, P., Platt, K.-L., and Oesch, F., 1980, Rat liver cytoplasmic dihydrodiol dehydrogenase: purification to apparent homogeneity and properties, J. Biol. Chem. in press.Google Scholar
  34. Walker, C. H., Bentley, P., and Oesch, F., 1977, Phylogenetic distribution of epoxide hydratase in different vertebrate species, strains and tissues measured using three substrates, Biochim. Biophys. Acta 539:427.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Franz Oesch
    • 1
  1. 1.Institute of PharmacologyUniversity of MainzMainzGermany

Personalised recommendations