Skip to main content

Multi-Step Metabolic Activation of Benzene in Rat Liver Microsomes

  • Chapter
  • First Online:
Biological Reactive Intermediates—II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 136))

Abstract

Benzene is a ubiquitous component of our chemical age. Due to its very special chemical and physical properties, benzene is widely used in the chemical industry and in the manufacture of rubber and plastics. In addition, benzene is used in motor fuel as an anti-knocking agent (Berlin et al., 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayengar, P.K., Hayaishi, O., Nakajma, M. and Tomida, I., 1959, Enzymic aromatization of 3,5-cyclohexadiene-1,2-diol, Biochim. Biophys. Acta 33:111.

    Article  CAS  Google Scholar 

  • Bentley, P. and Oesch, F., 1975, Purification of rat liver epoxide hydrataseto apparent homogeneity, FEBS Lett. 59: 291.

    CAS  PubMed  Google Scholar 

  • Berlin, M., Gage, J.C. and Johnson, E., 1974, Increased aromatics in motor fuels: A review of the environmental and health effects, Workenvironm.-hlth. 11: 1.

    CAS  Google Scholar 

  • Bolt, H.M. and Kappus, H., 1974 Irreversible binding of ethynylestradiol metabolites to proteins and nucleic acids as catalyzed by rat liver microsomes and mushroom tyrosinase, J. Steroid Biochem. 5:179.

    Article  CAS  Google Scholar 

  • Capel, I.D., French, M.R., Millburn, P., Smith, R.L. and Williams, R.T., 1972, The fate of 14C-phenol in various species, Xenobiotica 2: 25.

    Article  CAS  Google Scholar 

  • Drew, R.T. and Fouts, J.R., 1974, The lack of effects of pretreatment with phenobarbital and chlorpromazine on the acute toxicity of benzene in rats, Toxicol. Appl. Pharmacol. 27:183.

    Article  CAS  Google Scholar 

  • Dutton, G.J., 1971, Glucuronide-forming enzymes, in: “Handbook of Experimental Pharmacology, Concepts in Biochemical Pharmacology”, Part 2, B.B. Brodie and J.R. Gillette eds., pp 378, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Dybing, E., Nelson, S.D., Mitchell, J.R., Sasame, H.A. and Gillette, J.R., 1976, Oxidation of a-methyldopa and other catechols by cytochrome P-450-generated superoxide anion: possible mechanism of methyldopa hepatitis, Mol. Pharmacol. 12:911.

    Google Scholar 

  • Gonasun, L.M., Witmer, C.M., Kocsis, J.J. and Snyder, R., 1973, Benzene metabolism in mouse liver microsomes, Toxicol. Appl. Pharmacol. 26:398.

    Article  CAS  Google Scholar 

  • Jerina, D., Daly, J., Witkop, B., Zaltzmann-Nirenberg, P. and Udenfriend, S., 1968, Role of arene oxide-oxepin system in the metabolism of aromatic substrates. 1. In vitro conversion of benzene oxide to a premercapturic acid and a dihydrodiol, Arch. Biochem. Biophys. 128–176.

    Google Scholar 

  • Kao, J. and Bridges, J.W., 1979, Metabolism of 14C-phenol by sheep, pig and rat, Xenobiotica, 9: 141.

    Article  CAS  Google Scholar 

  • Laskin, S. and Goldstein, B.D., 1977, Benzene toxicity, a critical evaluation, J. Tox. Env. Health suppl. 2.

    Google Scholar 

  • Lutz, W.K. and Schlatter, C., 1977, Mechanism of the carcinogenic action of benzene: Irreversible binding to rat liver DNA, Chem.-Biol. Interact. 18:241.

    Article  CAS  Google Scholar 

  • Marks, F. and Hecker, E., 1969, Metabolism and mechanism of action of estrogens. XII. Structure and mechanism of formation of water-soluble and protein-bound metabolites of estrone in rat liver microsomes in vitro and in vivo, Biochim. Biophys. A_ta 187:250.

    Article  CAS  Google Scholar 

  • McCord, J.M. and Fridovitch, I., 1969, Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244:6049.

    Google Scholar 

  • Parke, D.V. and Williams, R.T., 1953 a, Studies in detoxication. 49. The metabolism of benzene containing 14C1 benzene. Biochem. J., 54: 231.

    Google Scholar 

  • Parke, D.V. and Williams, R.T., 1953 b, Studies in detoxication. 54. The metabolism of benzene. (a) The formation of phenylglucuronide and phenylsulfuric acid from i4C-benzene. (b) The metabolism of 14C-phenol, Biochem. J. 55:337.

    Article  CAS  Google Scholar 

  • Platt, K. and Oesch, F., 1977, The preparation of 14C and 3H labelled benzene oxide, J. Label. Comp. Radiopharm. 13:471.

    Google Scholar 

  • Porteous, J.W. and Williams, R.T., 1949, Studies in detoxication. 20. The metabolism of benzene. II. The isolation of phenol, catechol, quinol, and hydroxyhydroquinol from the etheral sulfate fraction of the urine of rabbits receiving benzene orally, Biochem. J. 44:56.

    Article  CAS  Google Scholar 

  • Sato, R., Fukuyama, T., Suzuki, T. and Yoshikawa, J., 1963, 1,2Dihydro-1,2-dihydroxybenzene and several other substances in the metabolism of benzene, J. Biochem. 53:23.

    Article  CAS  Google Scholar 

  • Sloane, N.H., 1965, Hydroxymethylation of the benzene ring. 1. Microsomal formation of phenol via prior hydroxymethylation of benzene, Biochim. Biophys. Acta 107:599.

    Google Scholar 

  • Snyder, R. and Kocsis, J.J., 1975, Current concepts of chronic benzene toxicity, CRC Crit. Rev. Toxic. 3:265.

    Article  CAS  Google Scholar 

  • Snyder, R., Lee, E.W., Kocsis, J.J. and Witmer, C.M., 1977, Bone marrow depressant and leukemogenic actions of benzene, Life Sciences 21: 1709.

    CAS  Google Scholar 

  • Snyder, R., Lee, E.W. and Kocsis, J.J., 1978, Binding of labeled benzene metabolites to mouse liver and bone marrow, Res. Com. Chem. Path. Pharm. 20:191.

    Google Scholar 

  • Tunek, A., Platt, K.L., Bentley, P. and Oesch, F., 1978, Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and effects of modifications of this metabolism, Mol. Pharmacol. 14:920.

    Google Scholar 

  • Tunek, A., Platt, K.L., Przybylski, M. and Oesch, F., 1980, Multistep metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry, Chem.-Biol. Interact., in press.

    Google Scholar 

  • Winterbourn, C.C., French, J.K. and Claridge, R.F.C., 1978, Superoxide dismutase as an inhibitor of reactions of semiquinone radicals, FEBS Lett. 94: 269.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tunek, A., Oesch, F. (1982). Multi-Step Metabolic Activation of Benzene in Rat Liver Microsomes. In: Snyder, R., et al. Biological Reactive Intermediates—II. Advances in Experimental Medicine and Biology, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-0674-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0674-1_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-0676-5

  • Online ISBN: 978-1-4757-0674-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics