Advertisement

A Brief Survey of Stochastic Electrodynamics

  • Timothy H. Boyer

Abstract

Stochastic electrodynamics and random electrodynamics are the names given to a particular version of classical electrodynamics. This purely classical theory is Lorentz’s classical electron theory(1) into which one introduces random electromagnetic radiation (classical zero-point radiation) as the boundary condition giving the homogeneous solution of Maxwell’s equations. The theory contains one adjustable parameter setting the scale of the random radiation, and this parameter is chosen in terms of Planck’s constant,h = 2πℏ. Many of the researchers(2–70) working on stochastic electrodynamics hope that it will provide an accurate description of atomic physics and replace or explain quantum theory. At the very least the theory makes available new tools for calculating van der Waals forces, and it deepens our understanding of the connections between classical and quantum theories.(71)

Keywords

Quantum Theory Harmonic Oscillator Adiabatic Invariant Radiation Equilibrium Stochastic Electrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    H. A. Lorentz,The Theory of Electrons, Dover, New York (1952). This is a republication of the 2nd edition of 1915.Google Scholar
  2. 2.
    P. Braffort, M. Spighel, and C. Tzara,C.R. Acad. Sci. 239, 157 (1954).zbMATHGoogle Scholar
  3. 3.
    P. Braffort and C. Tzara,C.R. Acad. Sci.239, 1779 (1954).Google Scholar
  4. 4.
    T. W. Marshall,Proc. R. Soc. London Ser. A276, 475 (1963).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    T. W. Marshall,Proc. Cambridge Philos. Soc.61, 537 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    T. W. Marshall,Nuovo Cimento 38, 206 (1965).Google Scholar
  7. 7.
    T. W. Marshall,Izv. Vyssh. Uchelon. Zavedo Fiz.12, 34, (1968).Google Scholar
  8. 8.
    T. W. Marshall and P. ClaverieJ. Math. Phys.to be published.Google Scholar
  9. 9.
    P. Braffort, M. Surdin, and A. Taroni,C.R. Acad. Sci.261, 4339 (1965).Google Scholar
  10. 10.
    L. L. Henry and T. W. Marshall,Nuovo Cimenta 41, 188 (1966).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. Surdin, P. Braffort, and A. Taroni,Nature 210, 405 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    P. Braffort and A. Taroni,C.R. Acad. Sci.264, 1437 (1967).Google Scholar
  13. 13.
    T. H. Boyer,Phys. Rev.174, 1631 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    . T. H. Boyer,Phys. Rev.174, 1764 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    T. H. Boyer,Phys. Rev.180, 19 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    T. H. Boyer,Phys. Rev.182, 1374 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    T. H. Boyer,Phys. Rev.185, 2039 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    T. H. Boyer,Phys. Rev.186, 1034 (1969).CrossRefGoogle Scholar
  19. 19.
    T. H. Boyer,Phys. Rev. (N.Y.) 56, 474 (1970).Google Scholar
  20. 20.
    T. H. Boyer,Phys. Rev. D1,1526(1970)ADSGoogle Scholar
  21. 21.
    T. H. Boyer,Phys. Rev. D1,2257(1970)ADSCrossRefGoogle Scholar
  22. 22.
    T. H. Boyer,Phys. Rev. D5,1799(1972)Google Scholar
  23. 23.
    T. H. Boyer,Phys. Rev. D6,314(1972)Google Scholar
  24. 24.
    T. H. Boyer,Phys. Rev. D7,1832(1973)ADSCrossRefGoogle Scholar
  25. 25.
    T. H. Boyer,Phys. Rev. A 9, 2078 (1974).Google Scholar
  26. 26.
    T. H. Boyer,Phys. Rev. D 11, 790 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    T. H. Boyer,Phys. Rev. D 11, 809 (1975).ADSCrossRefGoogle Scholar
  28. 28.
    T. H. Boyer,Phys. Rev. A 11, 1650 (1975).ADSCrossRefGoogle Scholar
  29. 29.
    T. H. Boyer,Phys. Rev. A 13, 2832 (1976).ADSGoogle Scholar
  30. 30.
    T. H. Boyer,Phys. Rev. A 18, 1228 (1978).Google Scholar
  31. 31.
    T. H. Boyer,Phys. Rev. A 18, 1238 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    T. H. Boyer,Phys. Rev. A 19, 1112 (1979).Google Scholar
  33. 33.
    T. H. Boyer,Phys. Rev. A 19, 3635 (1979).MathSciNetADSGoogle Scholar
  34. 34.
    T. H. Boyer,Phys. Rev. A. to be published.Google Scholar
  35. 35.
    T. H. Boyer,Phys. Rev. A11,to be published.Google Scholar
  36. 36.
    E. Santos,An. Re. Soc. Esp. Fis. Quim. Ser. A 64, 317 (1968).Google Scholar
  37. 37.
    E. Santos,Lett. Nuovo Cimenta 4, 497 (1972).CrossRefGoogle Scholar
  38. 38.
    E. Santos,J. Math. Phys. (N.Y.) 15, 1954 (1974).ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    E. Santos,Nuovo Cimenta B 19, 57 (1974).ADSCrossRefGoogle Scholar
  40. 40.
    E. Santos,Nuovo Cimenta B 22, 201 (1974).ADSCrossRefGoogle Scholar
  41. 41.
    E. Santos,An. Fis.71, 329 (1975).Google Scholar
  42. 42.
    P. Braffort,C.R. Acad. Sci. Ser. B 270, 12 (1970).Google Scholar
  43. 43.
    M. Surdin,C.R. Acad. Sci. Ser. B 270, 193 (1970).Google Scholar
  44. 44.
    M. Surdin,Ann. Inst. Henri Poincaré 15, 203 (1971).ADSGoogle Scholar
  45. 45.
    M. Surdin,Int. J. Theor. Phys.4, 117 (1971).CrossRefGoogle Scholar
  46. 46.
    M. Surdin,Int. J. Theor. Phys.8, 183 (1973).CrossRefGoogle Scholar
  47. 47.
    M. Surdin,Int. J. Theor. Phys.9, 185 (1974).CrossRefGoogle Scholar
  48. 48.
    M. Surdin,C.R. Acad. Sci. Ser. B 280, 337 (1975).Google Scholar
  49. 49.
    M. Surdin,Phys. Lett. A 58, 370 (1976).ADSCrossRefGoogle Scholar
  50. 50.
    L. de la Pena-Auerbach and A. M. Cetto,Nuovo Cimento B 10, 592 (1972).Google Scholar
  51. 51.
    L. de la Pena-Auerbach and A. M. Cetto,Phys. Lett. A 47, 183 (1974).ADSCrossRefGoogle Scholar
  52. L. de la Pena-Auerbach and A. M. Cetto,Rev. Mex. Fis.23, (1974).Google Scholar
  53. 53.
    L. de la Pena-Auerbach and A. M. Cetto,Found. Phys.5, 355 (1975).MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    L. de la Pena-Auerbach and A. M. Cetto,Phys. Lett. A 56, 253 (1976).MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    L. de la Pena-Auerbach and A. M. Cetto,Rev. Mex. Fix.25, I (1976).Google Scholar
  56. 56.
    L. de la Pena-Auerbach and A. M. Cetto,J. Math. Phys.18, 1612 (1977).ADSCrossRefGoogle Scholar
  57. 57.
    L. de la Pena-Auerbach and A. M. Cetto,Phys. Lett. A62, 389 (1977).Google Scholar
  58. 58.
    L. de la Pena-Auerbach and A. M. Cetto,Found. Phys.8, 191 (1978).MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    L. de la Pena-Auerbach and A. M. Cetto,J. Math. Phys.20, 469 (1979).MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    O. Theimer,Phys. Rev. D 4, 1597 (1971).ADSCrossRefGoogle Scholar
  61. 61.
    O. Theimer and P. R. Peterson,Phys. Rev. D 10, 3962 (1974).ADSCrossRefGoogle Scholar
  62. 62.
    O. Theimer and P. R. Peterson,Nuovo Cimento Lett.13, 279 (1975).CrossRefGoogle Scholar
  63. 63.
    O. Theimer and P. R. Peterson,Phys. Rev. D 14, 656 (1976).ADSCrossRefGoogle Scholar
  64. 64.
    P. Claverie and S. Diner,C.R. Acad. Sci. Ser. B 280, 1 (1975).Google Scholar
  65. 65.
    P. Claverie and S. Diner, inLocalization and Delocalization in Quantum Chemistry, Vol. II, Eds. O. Chalvet, R. Daudel, S. Diner, and J. P. Malrieu, Reidel, Dordrecht, Holland (1976).Google Scholar
  66. 66.
    P. Claverie and S. Diner,Ann. Fond. L. de Broglie 1, 73 (1976).Google Scholar
  67. 67.
    P. Claverie and S. Diner,Int. J. Quantum Chem.12, Suppl. 1, 41 (1977).Google Scholar
  68. 68.
    A. F. Kracklauer,Phys. Rev. D 14, 654 (1976).ADSCrossRefGoogle Scholar
  69. 69.
    S. M. Moore,Lett. Nuovo Cimento 20, 676 (1977).ADSCrossRefGoogle Scholar
  70. 70.
    L. Pesquera and E. Santos,Lett. Nuovo Cimento 20, 308 (1977).MathSciNetCrossRefGoogle Scholar
  71. 71.
    Several reviews of stochastic electrodynamics are already available. See References 26 and 64Google Scholar
  72. P. W. Milonni,Phys. Rep.25,I (1976), Section 5.Google Scholar
  73. 72.
    A. Einstein and L. Hopf,Ann. Phys. (Leipzig) 33, 1 105 (1910);Google Scholar
  74. A. Einstein,Ann. Phys. (Leipzig) 47, 879 (1915).ADSzbMATHGoogle Scholar
  75. 73.
    M. von Laue,Ann. Phys. (Leipzig) 47, 853 (1915).ADSzbMATHGoogle Scholar
  76. 74.
    In Reference 1, note 6 (p. 240) gives Lorentz’s explicit assumption regarding the boundary conditions.Google Scholar
  77. 75.
    M. Planck,Verh. Dtsch. Phys. Ges.13, 138 (1911).Google Scholar
  78. 76.
    W. Nernst,Verh. Dtsch. Phys. Ges.18, 83 (1916).Google Scholar
  79. 77.
    A. Einstein and O. Stern,Ann. Phys. (Leipzig) 40, 551 (1913).ADSzbMATHGoogle Scholar
  80. 78.
    See reference 76, pp. 89–90.Google Scholar
  81. 79.
    See reference 76, p. 116.Google Scholar
  82. 80.
    T. A. Welton,Phys. Rev.74, 1157 (1948).CrossRefGoogle Scholar
  83. 81.
    H. B. G. Casimir,K. Ned. Akad. Wet. Versl. Gewon. Vergad. Afd. Natuvrkd.51, 793 (1948).zbMATHGoogle Scholar
  84. 82.
    . H. B. G. Casimir,J. Chim. Phys. Phys. Chim. Biol.46, 407 (1949).Google Scholar
  85. 83.
    The random character of the radiation is discussed in References 72 and 73Google Scholar
  86. M. Planck,Theory of Heat Radiation, Dover, New York (1959).zbMATHGoogle Scholar
  87. A modern treatment is that of S. O. Ricein Selected Papers on Noise and Stochastic Processes, Ed. N. Wax, Dover, New York (1954), p. 133.Google Scholar
  88. 84.
    F. London,Z. Phys.63, 245 (1930).ADSzbMATHCrossRefGoogle Scholar
  89. 85.
    M. J. Sparnaay,Physica (Utrecht) 24, 751 (1958).ADSCrossRefGoogle Scholar
  90. 86.
    E. M. Purcell,Electricity and Magnetism, McGraw-Hill, New York (1965), p. 370.Google Scholar
  91. 87.
    See, for example, L. Rosenfeld,Theory of Electrons, Dover, New York (1965), pp. 45–47.Google Scholar
  92. 88.
    See J. H. van Vleck,The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London (1932), p. 94;zbMATHGoogle Scholar
  93. D. C. Mattis,The Theory of Magnetism, Harper and Row, New York (1965), p. 21.Google Scholar
  94. 89.
    See also References 27 and 31 for alternative calculations of diamagnetism.Google Scholar
  95. 90.
    SSee, for example, E. Nelson,Phys. Rev.150, 1079 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Timothy H. Boyer
    • 1
  1. 1.Department of PhysicsCity College of the City University of New YorkNew YorkUSA

Personalised recommendations