Unified View of Spontaneous Emission in Several Theories of Radiation

  • J. H. Eberly

Abstract

Consider the model classical field theory described by the Lagrangian density ℒ(x,t):
$$ \mathcal{L}\left( {x,t} \right) = \psi *\left( {x,t} \right)\left\{ {i\hbar \frac{\partial } {{\partial t}} - \frac{1} {{2m}}\left[ {\frac{\hbar } {i}\nabla - \frac{e} {c}A\left( {x,t} \right)} \right] - V\left( x \right)} \right\}\psi \left( {x,t} \right) + \frac{1} {{8\pi }}\left\{ {\left[ {\frac{1} {c}\dot A\left( {x,t} \right)} \right]^2 - \left[ {\nabla \times A\left( {x,t} \right)} \right]^2 } \right\}$$
(1)
Evidently, ℒ(x) is the beginning of a theory of the interaction of the fields ψ and A. There are several free parameters in the theory: ℏ, m, e, c.

Keywords

Frequency Shift Spontaneous Emission Conjugate Momentum Unify View Interpretive Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    By classical we mean that none of the interpretive framework of quantum field theory is involved, and that the dynamical fields are simple mathematical functions that commute everywhere and at all times with each other. Another discussion of possible consequences of (I) and (4) has been given by J. H. Eberly, in Laser Photochemistry, Tunable Lasers, and Other Topics,Eds. S. F. Jacobs et al.,Addison-Wesley, Reading, Massachussetts (1976), p. 421.Google Scholar
  2. 2.
    V. F. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930). See also Section 28 of G. Källen, Quantum Electrodynamics, translated by C. K. Iddings and M. Mizushima, Springer, Heidelberg (1972).Google Scholar
  3. 3.
    J. R. Ackerhalt and J. H. Eberly, Phys. Rev. D 10, 3350 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    S. B. Lai, Ph.D. Thesis, University of Rochester (1976).Google Scholar
  5. See also P. Avan, C. CohenTannoudji, J. Dupont-Roc, and C. Fabre, J. Phys. (Paris) 37, 993 (1976)CrossRefGoogle Scholar
  6. E. J. Moniz and D. H. Sharp, Phys. Rev. D 15, 2850 (1976)ADSCrossRefGoogle Scholar
  7. J. Dupont-Roc, C. Fabre, and C. Cohen-Tannoudji, J. Phys. B 11, 563 (1978).ADSCrossRefGoogle Scholar
  8. 5.
    P. W. Milonni, Phys. Rep. 25, 1 (1976)ADSCrossRefGoogle Scholar
  9. J. H. Eberly, reference 1; J. H. Eberly, in Particles and Fields 1974, Ed. C. E. Carlson, American Institute of Physics, New York (1974).Google Scholar
  10. 6.
    K. Wôdkiewicz and J. H. Eberly, Ann. Phys. (New York) 101, 574 (1976), and references therein.Google Scholar
  11. 7.
    P. W. Milonni and W. A. Smith, Phys. Rev. A 11, 814 (1975)ADSCrossRefGoogle Scholar
  12. P. W. Milonni, J. R. Ackerhalt, and W. A. Smith, Phys. Rev. Leu. 31, 958 (1973).ADSCrossRefGoogle Scholar
  13. 8.
    See T. H. Boyer, Phys. Rev. D 11, 790, 809 (1975), and P. W. Milonni, reference 5.Google Scholar
  14. 9.
    See E. T. Jaynes, Microwave Laboratory Report No. 502, Stanford University, Stanford (1958).Google Scholar
  15. 10.
    E. T. Jaynes, in Coherence and Quantum Optics, Eds. L. Mandel and E. Wolf, Plenum, New York (1973), p. 35.CrossRefGoogle Scholar
  16. 11.
    E. T. Jaynes, in Quantum Electronics,Ed. C. H. Townes, Columbia University Press, New York (1960), p. 288. The Hamiltonian form of our field theory has close parallels with this earlier development.Google Scholar
  17. 12.
    L. Mandel, in Progress in Optics,Vol. 13, Ed. E. Wolf, North-Holland, Amsterdam (1975). See also P. W. Milonni, ref. 5 above.Google Scholar
  18. 13.
    Our theory is obviously based directly on Jaynes’ NCT. What we call NED may well be identical with NCT, but it should be Jaynes who says so.Google Scholar
  19. 14.
    J. R. Ackerhalt, J. H. Eberly, and P. L. Knight, in Coherence and Quantum Optics, Eds. L. Mandel and E. Wolf, Plenum, New York (1973), p. 635.CrossRefGoogle Scholar
  20. See also the remarks of E. T. Jaynes, p. 68–69 of the same volume, and L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975), Section 7. 4.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. H. Eberly
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations