A Local Gauge-Invariant Formulation of Quantum Electrodynamics

  • D. H. Sharp


In this article I want to discuss a local and manifestly gauge-invariant formulation of quantum electrodynamics which has been developed by R. Menikoff and myself.(1,2) The manifest gauge invariance is achieved by using the electromagnetic field strengths, rather than potentials, to describe the electromagnetic field, and by using local currents, rather than canonical fields, to describe the matter. In order to represent this theory in Hilbert space, we study the continuous unitary representations of the group obtained from the exponentiated currents and electromagnetic field strengths. These operators can be represented on a Hilbert space having positive norm, so that the necessity for an indefinite metric does not arise here, and the equations of motion hold as operator equations in this Hilbert space.


Hilbert Space Local Current Quantum Electrodynamic Current Algebra Nonrelativistic Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    D. H. Sharp, Phys. Rev. 165, 1867 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    R. Menikoff and D. H. Sharp, J. Math. Phys. 18, 471 (1977).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    F. Strocchi and A. S. Wightman, J. Math. Phys. 15, 2198 (1974).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    B. DeWitt, Phys. Rev. 125, 2189 (1962).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Jordan and W. Pauli, Z. Phys. 47, 151 (1928).ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    A brief review of the work on local currents in nonrelativistic quantum theory through 1974 can be found in D. H. Sharp, What we have learned about representing local nonrelativistic current algebras, in Local Currents and Their Applications,Eds. D. H. Sharp and A. S. Wightman, North-Holland, Amsterdam (1974), pp. 85–98. Further developments are described in Reference (8).Google Scholar
  8. 8.
    R. Menikoff and D. H. Sharp, J. Math. Phys. 16, 2341 (1975).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G. A. Goldin and D. H. Sharp, Lie algebras of local currents and their representations in Group Representations in Mathematics and Physics, Battelle Seattle 1969 Rencontres, Ed. V. Bargmann, Springer-Verlag, New York (1970), pp. 300–311.Google Scholar
  10. 10.
    G. A. Goldin, J. Grodnik, R. T. Powers, and D. H. Sharp, J. Math. Phys. 15, 88 (1974).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    I. Gelfand and N. Vilenkin, Generalized Functions, Vol. 4, Academic, New York (1964).Google Scholar
  12. 12.
    G. A. Goldin, J. Math. Phys. 12, 462 (1971).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    F. Strocchi, Phys. Rev. 162, 1429 (1967).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    F. Strocchi, Phys. Rev. D 2, 2334 (1970).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    R. Ferrari, L. Picasso, and F. Strocchi, Commun. Math. Phys. 35, 25 (1974).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    G. A. Goldin, R. Menikoff, and D. H. Sharp, Particle statistics from induced representations of a local current group, accepted for publication in J. Math. Phys.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • D. H. Sharp
    • 1
  1. 1.Theoretical Division, Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations