Advertisement

Macroscopic Quantum Electrodynamics

  • Kimball A. Milton

Abstract

Source theory(1) is an effective, nonspeculative attitude and framework in which to treat the interactions of quantum particles. It is a field theory without operators in which, as in classical field theory, phenomenological fields are defined in terms of the response of the action to probe sources. The transition to classical physics is thus smooth. It is an effective approach in that renormalization, which connects operator fields to their particle content, does not occur. It is effective also in the practical sense: a great variety of calculations in gravitational, weak, electromagnetic, and strong interactions can be carried out simply and with physical clarity.

Keywords

Casimir Force Casimir Energy Classical Field Theory Casimir Effect Source Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    J. Schwinger, Particles, Sources, and Fields, Vols. I and II, Addison-Wesley, Reading, Massachusetts (1970 and 1973 ).Google Scholar
  2. 2.
    J. Schwinger, Phys. Rev. 82, 664 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Schwinger, Phys. Rev. D 7, 1696 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    J. Schwinger, Particles, Sources, and Fields,Vol. III, Section 5–6, in preparation.Google Scholar
  5. 5.
    W.-y. Tsai and A. Yildiz, Phys. Rev. D 8, 3446 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    W.-y. Tsai, Phys. Rev. D 8, 3460 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    W.-y. Tsai, Phys. Rev. D 10, 1342 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    J. Schwinger and W.-y. Tsai, Phys. Rev. D 9, 1843 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    J. Schwinger and W.-y. Tsai, Ann. Phys. (N.Y.) 110, 63 (1978).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    W.-y. Tsai, Phys. Rev. D 18, 3863 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    W.-y. Tsai and T. Erber, Phys. Rev. D 10, 492 (1974) and 12, 1132 (1975).Google Scholar
  12. 12.
    W.-y. Tsai, Phys. Rev. D 10, 2699 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    L. F. Urrutia, Phys. Rev. D 17, 1977 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    L. L. DeRaad, Jr., K. A. Milton, and N. D. Hari Dass, Phys. Rev. D 14, 3326 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    L. L. DeRaad, Jr., N. D. Hari Dass, and K. A. Milton, Phys. Rev. D 9, 1041 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    K. A. Milton, W.-y. Tsai, L. L. DeRaad, Jr., and N. D. Hari Dass, Phys. Rev. D 10, 1299 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    Y. J. Ng and W.-y. Tsai, Phys. Rev. D 16, 286 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    J. Schwinger, W.-y. Tsai, and T. Erber, Ann. Phys. (N.Y.) 96, 303 (1976)ADSCrossRefGoogle Scholar
  19. T. Erber, D. White, W.-y. Tsai, and H. G. Latal, Ann. Phys. (N.Y.) 102, 405 (1976).ADSCrossRefGoogle Scholar
  20. 19.
    H. B. G. Casimir, Proc. K. Ned. Akad. Wet. Ser. B 51, 793 (1948).zbMATHGoogle Scholar
  21. 20.
    H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).ADSzbMATHCrossRefGoogle Scholar
  22. 21.
    J. Schwinger, Lett. Math. Phys. 1, 43 (1975).MathSciNetADSCrossRefGoogle Scholar
  23. 22.
    J. Schwinger, L. L. DeRaad, Jr., and K. A. Milton, Ann. Phys. (N.Y.) 115, 1 (1978).MathSciNetADSCrossRefGoogle Scholar
  24. 23.
    K. A. Milton, L. L. DeRaad, Jr., and J. Schwinger, Ann. Phys. (N.Y.) 115, 388 (1978).MathSciNetADSCrossRefGoogle Scholar
  25. 24.
    S. L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971).CrossRefGoogle Scholar
  26. 25.
    See, for example, I. M. Ternov, V. G. Bagrov, V. A. Bordovttsyn, and O. F. Dorofeev, Zh. Eksp. Teor. Fiz. 55, 2273 (1968)Google Scholar
  27. I. M. Ternov, V. G. Bagrov, V. A. Bordovttsyn, and O. F. Dorofeev, [English translation: Soy. Phys. JETP 28 1206 (1969)].Google Scholar
  28. 26.
    J. Schwinger, Particles, Sources, and Fields,Vol. III, Section 5–7, in preparationGoogle Scholar
  29. K. A. Milton, W.-y. Tsai, and L. L. DeRaad, Jr., Phys. Rev. D 9, 1809, 1814 (1974).ADSGoogle Scholar
  30. The result agrees with that obtained first by E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29 94 (1955) [English translation: Soy. Phys. JETP 2 73 (1956)], and confirmed experimentally at T = 0 most convincingly by E. S. Sabisky and C. H. Andersen, Phys. Rev. A 7,790 (1973).Google Scholar
  31. 28.
    The earlier literature in this nearly vast subject is surveyed by T. H. Boyer, Ann. Phys. (N.Y.) 56, 474 (1970).Google Scholar
  32. 29.
    H. B. G. Casimir, Physica 19, 846 (1956).ADSCrossRefGoogle Scholar
  33. 30.
    T. H. Boyer, Phys. Rev. 174, 1764 (1968).ADSCrossRefGoogle Scholar
  34. 31.
    Reference 1, Vol. I, pp. 78–85Google Scholar
  35. J. Schwinger, Am. J. Phys. 42, 507, 510 (1974)ADSCrossRefGoogle Scholar
  36. K. A. Milton, Am. J. Phys. 42, 911 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Kimball A. Milton
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations