Classical and Quantum Theories of Radiation

  • Peter W. Milonni


Quantum theory developed from the study of the interaction of light and matter. Around the beginning of this century, experimental physicists reported phenomena that demonstrated the inadequacy of classical physics. Quantum features of the electromagnetic field were first postulated by Planck in 1900 in order to account for the spectrum of blackbody radiation observed by Lummer and Pringsheim. In order to account for the discrete sequence of wavelengths in the spectrum of atomic hydrogen, Bohr in 1913 postulated that the electron could move only in certain stationary orbits; Planck’s constant appeared in his theory as the fundamental “unit of action.” We are all familiar with these and other inspired guesses which led finally to the birth of quantum mechanics, as we know it, in the years 1925–26. Dirac’s paper on the quantum theory of the electromagnetic field appeared in 1927,(1) and by 1930 there was little doubt that the quantum theory of light and matter was vastly superior to classical theory. Born was so impressed by the theory that at the Fifth Solvay Conference in 1927 he remarked, “We consider that quantum mechanics is a complete theory, and that its fundamental hypotheses, both physical and mathematical, are not susceptible to further modification.”


Quantum Theory Spontaneous Emission Probability Amplitude Radiation Reaction Lamb Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    P. A. M. Dirac, Proc. R. Soc. London Ser. A 114, 243 (1927).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    W. Heisenberg, Z. Phys. 33, 879 (1925).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Ladenburg, Z. Phys. 4, 451 (1921).ADSCrossRefGoogle Scholar
  4. 4.
    A. Einstein, Phys. Z. 18, 121 (1917).Google Scholar
  5. 5.
    W. Kuhn, Z. Phys. 33, 408 (1925).ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Born and P. Jordan, Z. Phys. 34, 858 (1925).ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    H. A. Kramers, Nature (London) 133, 673 (1924).ADSCrossRefGoogle Scholar
  8. 8.
    R. Ladenburg and H. Kopfermann, Nature (Paris) 122, 438 (1928).ADSCrossRefGoogle Scholar
  9. 9.
    M. Born, W. Heisenberg, and P. Jordan, Z. Phys. 35, 557 (1926).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    S. Weinberg, Proc. Am. Acad. Arts Sci. 106, 22 (1977).Google Scholar
  11. 11.
    See P. W. Milonni, Phys. Lett. C 25, 1 (1976), and references therein to work of J. R. Ackerhalt, P. L. Knight, and J. H. Eberly.Google Scholar
  12. 12.
    H. A. Bethe, Phys. Rev. 72, 339 (1947).ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 72, 241 (1947).ADSCrossRefGoogle Scholar
  14. 14.
    See, for instance, footnote 13 of R. P. Feynman, Phys. Rev. 76, 769 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    T. A. Welton, Phys. Rev. 74, 1 157 (1948).ADSGoogle Scholar
  16. 16.
    This view of the roles of radiation reaction and vacuum field fluctuations in spontaneous emission was arrived at independently and simultaneously by 1. R. Senitzky and P. W. Milonni, J. R. Ackerhalt, and W. A. Smith (see reference 11).Google Scholar
  17. 17.
    C. R. Stroud, Jr. and E. T. Jaynes, Phys. Rev. A 1, 106 (1970).ADSCrossRefGoogle Scholar
  18. 18.
    J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945).ADSCrossRefGoogle Scholar
  19. 19.
    See, however, F. Hoyle and J. V. Narlikar, Action at a Distance in Physics and Cosmology, Freeman, San Francisco (1974).Google Scholar
  20. 20.
    E. A. Power, Am. J. Phys. 34, 516 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    E. T. Jaynes, Coherence and Quantum Optics, Eds. L. Mandel and E. Wolf, Plenum, New York (1978), pp. 495–509.Google Scholar
  22. 22.
    See, for example, T. H. Boyer, Phys. Rev. D 11, 790 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    T. H. Boyer, Phys. Rev. 182, 1374 (1969).ADSCrossRefGoogle Scholar
  24. 24.
    See, for example, the following papers and references therein: E. Santos, Nuovo Cimento B 22B, 201 (1974)ADSCrossRefGoogle Scholar
  25. P. Claverie and S. Diner, in Localization and Delocalization in Quantum Chemistry,Vol II, Eds. O. Chalvet et al.,Reidel Publishing Co., Dordrecht, Holland (1976), pp. 395–448Google Scholar
  26. L. de la Pena-Auerbach and A. M. Cetto, Found. Phys. 8, 191 (1978).MathSciNetADSCrossRefGoogle Scholar
  27. 25.
    See, for example, W. Heisenberg, The Physical Principles of the Quantum Theory, Dover, New York (1949).Google Scholar
  28. 26.
    R. P. Feynman, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley (1951), p. 533.Google Scholar
  29. 27.
    P. A. M. Dirac, Fields Quanta 3, 154 (1972).Google Scholar
  30. 28.
    P. A. M. Dirac, Principles of Quantum Mechanics, 4th ed., Oxford University Press, London (1958), p. 9.zbMATHGoogle Scholar
  31. 29.
    P. L. Knight and L. Allen, Opt. Commun. 7, 44 (1973).ADSCrossRefGoogle Scholar
  32. 30.
    J. F. Clauser, Phys. Rev. D 9, 853 (1974).ADSCrossRefGoogle Scholar
  33. 31.
    W. W. Chow, M. O. Scully, and J. O. Stoner, Jr., Phys. Rev. A 11, 1380 (1975)ADSCrossRefGoogle Scholar
  34. R. M. Herman, H. Grotch, R. Kornblith, and J. H. Eberly, Phvs. Rev. A 11, 1389 (1975).ADSCrossRefGoogle Scholar
  35. 32.
    C. A. Kocher and E. D. Commins, Phys. Rev. Lett. 18, 575 (1967).ADSCrossRefGoogle Scholar
  36. 33.
    J. F. Clauser, Phvs. Rev. A 6, 49 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Peter W. Milonni
    • 1
  1. 1.Perkin-Elmer CorporationWiltonUSA

Personalised recommendations