Metalworking ll: Extrusion

  • Paul Loewenstein

Abstract

Extrusion* is the most important technique for the production of simple or complex long shapes of beryllium metal. Historically, extrusion was the earliest fabrication method for sound beryllium shapes, and for a long time it remained the only method of producing a structural material with appreciable ductility.

Keywords

Carbon Steel Reduction Ratio Extrusion Temperature Extrusion Condition Loose Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L C. E. Pearson and R. N. Parkins, The Extrusion of Metals, 2nd ed., John Wiley and Sons, Inc., New York (1960).Google Scholar
  2. 2.
    J. L. Klein, Advances in Extrusion Technology, American Society of Tool and Manufacturing Engineers, Paper No. SD65–37 (1964).Google Scholar
  3. 3.
    P. Loewenstein, A. R. Kaufmann, and S. V. Arnold, in: The Metal Beryllium ( D. W. White, Jr. and J. E. Burke, eds.), pp. 241–261, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  4. 4.
    C. B. Sawyer, N. W. Beaver, H. W. Dodds, and D. D. Rapprich, U.S. Atomic Energy Commission, REP No. BBC-50 (1950).Google Scholar
  5. 5.
    P. Loewenstein, A. R. Kaufmann, and S. V. Arnold, in: The Metal Beryllium ( D. W. White, Jr. and J. E. Burke, eds.), pp. 258–260, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  6. 6.
    G. E. Darwin and J. H. Budderly, Beryllium, pp. 128–132, Academic Press, Inc., New York ( Butterworths Scientific Publications, London ) (1960).Google Scholar
  7. 7.
    E. G. Creutz and D. Gurinsky, Fabrication of Beryllium Metal, Met, Progr. 62, 82–84 (1952).Google Scholar
  8. 8.
    E. C. Creutz, U.S. Atomic Energy Commission, DEP. No. AECD 2883 (1946).Google Scholar
  9. 9.
    A. R. Kaufmann, P. Grodon, and D. W. Lillie, The Metallurgy of Beryllium, Trans. Am. Soc. Met. 42, 786 (1950).Google Scholar
  10. 10.
    M. R. Lundberg, Atomics International Division, Rocky Flats Plant, Golden, Colorado, private communication.Google Scholar
  11. 11.
    Technical Data Book for Ingot-Sheet Beryllium, RFP-1605, The Dow Chemical Company, Rocky Flats Division, Golden, Colorado (1972).Google Scholar
  12. 12.
    Kawecki Beryico Industries, Inc., File No. 302 6-SP2, Beryllium-High Purity Extrusion Grade (1975).Google Scholar
  13. 13.
    P. Loewenstein, A. R. Kaufmann, and S. V. Arnold, in: The Metal Beryllium ( D. W. White, Jr. and J. E. Burke, eds.), p. 257, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  14. 14.
    P. Loewenstein, A. R. Kaufmann, and S. V. Arnold, in: The Metal Beryllium ( D. W. White, Jr. and J. E. Burke, eds.), pp. 246–247, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  15. 15.
    P. Loewenstein, A. R. Kaufmann, and S. V. Arnold, in: The Metal Beryllium ( D. W. White, Jr. and J. E. Burke, eds.), pp. 253–254, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  16. 16.
    J. M. Siergiej and V. Nerses, Final Report to Northrup Corporation, Extrusion Development of Beryllium U Channels, Phases I, II, and 111. Report No. NMI-4469, Nuclear Metals, Inc,, Concord, Massachusetts (1961).Google Scholar
  17. 17.
    L. M. Christensen and R. R. Wells, Program for the Development of Extruded Shapes, Final Technical Engineering Report (1958) (1961), Norair Report No, NOR-6225 (1962).Google Scholar
  18. 18.
    R. G. Jenkins, J. M. Siergiej, A. K. Wolff, and J. L. Klein, Development of Improved Fabrication Methods, Processes and Techniques for Producing Typical Aircraft Shapes from Beryllium, Technical Documentary Report to the Air Force, No. ML TDR-64–108, Nuclear Metals Division of Textron, Inc., Concord, Massachusetts (1964).Google Scholar
  19. 19.
    J. M. Siergiej, Extrusion of Beryllium Structure Shapes, in: Beryllium, Its Metallurgy and Properties (Henry M. Hausner, ed.), pp. 86–101, University of California Press, Berkeley and Los Angeles (1965).Google Scholar
  20. 20.
    Gerald Friedman, Problems in the Extrusion of Structural Beryllium Shapes, Technical Paper MF-67–204, American Society of Tool and Manufacturing Engineers, Dearborn, Michigan.Google Scholar
  21. 21.
    D. W. Lillie, The Physical and Mechanical Properties of Beryllium Metal, in: The Metal Beryllium (D. W. White, Jr. and J. E. Burke, eds.), pp. 312, 313, 324, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  22. 22.
    J. L. Klein, V. G. Macres, D. H. Woodard, and J. Greenspan, Ductility of Beryllium as Related to Preferred Orientation and Grain Structure, in: The Metal Beryllium (D. W. White, Jr. and J. E. Burke, eds.), pp. 429, 430, The American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  23. 23.
    Hughes Aircraft Company, Specifications—Extruded Tubing, Beryllium, HMS20–1596, Rev. E. (1974).Google Scholar
  24. 24.
    C. H. Zenuk and P. Loewenstein, Production Techniques for the Extrusion of Thin Lockalloy Shapes, Technical Report No, AFML-TR-68–239, AFML/AFSC, Wright Patterson Air Force Base, Ohio (1968).Google Scholar
  25. 25.
    N. P. Pinto, Kawecki Berylco Industries, Inc., private communicationGoogle Scholar
  26. 26.
    Kawecki Berylco Industries, Inc. Product Specification, Lockalloy, File No. 303 3-SPI.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Paul Loewenstein
    • 1
  1. 1.Nuclear Metals, Inc.ConcordUSA

Personalised recommendations