Fracture Mechanics

  • Roger Edwin Cooper


Fracture mechanics offers a way of predicting the behavior of preexisting sharp flaws in a structure from a knowledge of the material properties, conditions of use, and geometrical details of that structure. The behavior of such flaws is important—if they grow under the influence of loading and possibly environment they may reach a size at which they cause loss of function of the structure (e.g., fluid leakage) or they may attain a critical size at which they propagate rapidly, causing sudden and catastrophic fracture. Using fracture mechanics one may calculate the maximum permissible flaw size that a structure can withstand for a given constructional material and usage and then arrange nondestructive inspection of the structure to detect flaws of that level both after manufacture and periodically during the lifetime of the structure. This approach may be contrasted with the conventional design method of sizing a structure according to calculated nominal stresses and the yield strength of the material combined with an empirically derived safety factor. This approach ignores the existence of flaws except as part of the safety factor. It is therefore inherently less precise and for brittle materials and weight-critical structures entails undesirably large safety factors.


Fracture Toughness Fatigue Crack Stress Intensity Factor Plane Strain Crack Opening Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Griffith, Trans. R. Soc. London 221, 163 (1920).Google Scholar
  2. 2.
    D. Eyre, Nature 200, 831 (1963).CrossRefGoogle Scholar
  3. 3.
    G. R. Irwin, Weld. J. (Miami) (Research Supplement) 33, 193 (1954).Google Scholar
  4. 4.
    G. R. Irwin, J. Appl. Mech. 24, 361 (1957).Google Scholar
  5. 5.
    G. R. Irwin, J. A. Kies, and H. L. Smith, Am, Soc. Test. Mater. Proc. 58, 640 (1958).Google Scholar
  6. 6.
    P. C. Paris and G. C. Sib, Am. Soc. Test, Mater. Spec. Tech. Publ. 381, 30 (1965).Google Scholar
  7. 7.
    G. R. Irwin and J. A. Kies, Weld. J. (Miami) 31, 95 (1952)Google Scholar
  8. 8.
    D. S. Dugdale, J. Mech. Phys. Sol. 8, 100 (1960).Google Scholar
  9. 9.
    A. A. Wells, The Status of COD in Fracture Mechanics, in: Proceedings of the 3rd Canadian Congress of Applied Mechanics, University of Calgary, Alberta, Canada (May 1971), p. 59.Google Scholar
  10. 10.
    R. W. Nichols, F. M. Burdekin, A. Cowan, D. Elliott, and T. Ingham, The Use of Critical Crack Opening Displacement Techniques for the Selection of Fracture Resistant Materials, in: Symposium on Fracture Toughness Concepts for Weldable Structural Steel, Risley, England (1969).Google Scholar
  11. 11.
    J. R. Rice, J. Appl. Mech. 35, 379 (1968).Google Scholar
  12. 12.
    ASTM Standard Method E399–74 (1974).Google Scholar
  13. 13.
    R. E. Cooper, J. Test. Eval. 3 (2), 87 (1975).Google Scholar
  14. 14.
    D. L. Harrod, T. F. Hengstenberg, and M. J. Manjoine, J. Mater. 4 (3), 618 (1969).Google Scholar
  15. 15.
    J. H. Mulherin, D. F. Armiento, and H. Markus, J. Basic Eng., 709 (December 1964).Google Scholar
  16. 16.
    R. E. Cooper, AWRE Report No. 017/72 (January 1972)Google Scholar
  17. 17.
    R. E. Cooper, Paper No. 432, Third International Fracture Conference, Munich (April 1973).Google Scholar
  18. 18.
    D. O. Harris and H. L. Dunegan, J. Mater 3 (1), 59 (1968).Google Scholar
  19. 19.
    H. L. Dunegan, D. O. Harris, and C. A. Tatro, Eng. Fract. Mech. 1, 105 (1968).CrossRefGoogle Scholar
  20. 20.
    H. L. Dunegan, ENS Report No. 68–321 (1968).Google Scholar
  21. 21.
    M. L. Jones, R. Bubsey, and W. F. Brown Jr., J. Test. Eval. 1 (2), 100 (1973).Google Scholar
  22. 22.
    L. Albertin, Technical Paper, Bend Formability and Fracture Toughness of Various Beryllium Foil, Sheet and Brake Grade Block Materials, in:Proceedings of WESTEC Conference, Los Angeles (March 1970)Google Scholar
  23. 23.
    M. Perm and I. Finnie, Report No. UCRL-51774 (March 1975).Google Scholar
  24. 24.
    W. O. Shabbits and W. A. Logsden, J. Test. Eval, 1 (2), 110 (1973).CrossRefGoogle Scholar
  25. 25.
    H. Conrad, J. Hurd, and D. Woodard, J. Test, Eval. 1(2), 88 (1973)Google Scholar
  26. 26.
    M. E. Prado, UCID Report No. 15970 (May 1972).Google Scholar
  27. 27.
    G. Tardiff, UCRL Report No. 51544 (February 1974).Google Scholar
  28. 28.
    G. R. Irwin, Mechanical and Metallurgical Behaviour of Sheet Steels, in: Proceedings of the 7th Sagamore Ordnance Materials Research Conference 1960 (G. Sachs, ed.), Syracuse University, New YorkGoogle Scholar
  29. 29.
    R. E. Cooper, H. M. Lindsay, and G. I. Turner, AWRE, unpublished work.Google Scholar
  30. 30.
    A. J. Stonehouse, Beryllium Micro-Alloying and Thermal Treatment, Report by Brush Wellman Inc., USA. (1965).Google Scholar
  31. 31.
    R. A. Foos, A. J. Stonehouse, and K. A. Walsh, Brush Wellman Report No. BBC-TR456 (March 1970).Google Scholar
  32. 32.
    B. Allen and A. Moore, in: Proceedings of the Institute of Metals Conference on the Metallurgy of Beryllium, London (1961).Google Scholar
  33. 33.
    R. E. Cooper, D. Beasley, and W. D. Rowland, AWRE Report No. 025 /71 (1971).Google Scholar
  34. 34.
    R. E. Cooper, Int. J. Fract. 11 (4), 640 (1975).Google Scholar
  35. 35.
    R. E. Cooper, Toughness-Porosity Phenomena, in: Proceedings of the Fourth International Fracture Conference, Windsor, Ontario, Canada (June 1977 ).Google Scholar
  36. 36.
    A. J. Stonehouse, R. M. Paine, and W. J. Buehler, Factors Affecting the Mechanical Behaviour of Beryllium, in: Proceedings of the WESTEC Conference, Los Angeles (March 1975).Google Scholar
  37. 37.
    E. G. King and R. E. Cooper, unpublished work.Google Scholar
  38. 38.
    G. I. Turner, AWRE private communication (1976).Google Scholar
  39. 39.
    T. A. Auten and J. E. Hanafee, UCRL Report No. 78241 (June 1976).Google Scholar
  40. 40.
    F. A. Pall, Boeing Co., Report No. D2–1 13565–1 (May 1967).Google Scholar
  41. 41.
    G. R. Irwin, Fracture of Pressure Vessels, in: Materials for Missiles and Space Craft (E. R. Parker, ed.), p. 204, McGraw-Hill, New York (1963).Google Scholar
  42. 42.
    P. C. Paris and D. O. Harris, UCRL Report No. 72442 (April 1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Roger Edwin Cooper
    • 1
  1. 1.Ministry of DefenceAtomic Weapons Research EstablishmentAldermaston, BerkshireUK

Personalised recommendations