Skip to main content

Abstract

Important changes in manufacturing beryllium powder products, mentioned in Chapter 2, have improved the mechanical properties of most mill products; data on earlier products (prior to 1970) are often obsolete. Block formerly showed about 1% elongation; it is now 3.0% minimum, usually about 4%. Sheet averages 15–20% elongation with a guaranteed 10% (formerly 5%). The strain-hardening coefficient has been improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Military Standards Assn. Handbook—Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5B, Chapter 7 (August 1973).

    Google Scholar 

  2. W. F. Brown, Jr., and Bryce King, Aerospace Structural Metals Handbook, Code 5100, Mechanical Properties Data Center Report No AFML-TR-68–115 (June 1974).

    Google Scholar 

  3. R. M. Shemenski and R. E. Maringer, Microstrain Characteristics of Isostatically Hot-Pressed Beryllium, J. Less-Common Met. 17,25–45 (1969)

    Google Scholar 

  4. F. L. Schierloh and S. G. Babcock, Tensile Properties of Beryllium at High Strain Rates and Temperatures, General Motors Technical Center Report No. AFML-TR-69–273 (October 1969).

    Google Scholar 

  5. J. E. Sniugeresky, Effect of Warm Working on the Mechanical Properties of Electrolytic Grade Beryllium, Sandia Report No. SAND-75–8753 (January, 1976 ).

    Google Scholar 

  6. S. H. Gelles, Impurity Effects in Beryllium, Battelle Columbus Report No. MCIC-72–06 (March 1972).

    Google Scholar 

  7. David L. Fergason, The Effects of Annealing on the Microstructure and Mechanical Properties of 0.100-inch-thick Ingot-Source Beryllium Sheet, Dow Chemical Report No. REP-1831 (May 1972).

    Google Scholar 

  8. W. H. Baker, R. Kesterson, and D. G. Opdycke, Cryogenic Beryllium Biaxial Stress Test, Westinghouse Astronuclear Report No. WANL-TME-1986 (April 1970).

    Google Scholar 

  9. U. S. Lindholm and L. M. Yeakley, Effect of Strain Rate, Temperature and Multiaxial Stress on the Strength and Ductility of S-200E Beryllium and 6A.L-4V Titanium, Southwest Research Institute Report No. AEML-TR-71–37 (March 1971).

    Google Scholar 

  10. T. A. Taylor, Structural Plasma-Consolidated Beryllium Using Optimized Powders, Union Carbide Project Report No. 47 (August 1973).

    Google Scholar 

  11. N. P. Pinto and A. J. Martin, High-Purity Beryllium Powder Components, Powder Metal!. 17, 74–84 (1974).

    Google Scholar 

  12. W. H. Golding, Influence of Some Processing Variables upon the Elevated and Room Temperature Strength of Ultrafine Beryllium Wires, Navy Aeronautical Materials Laboratory Report No. NAEC-AML-2441 (May 1966).

    Google Scholar 

  13. N. P. Pinto and J. P. Denny, Beryllium Wire: A New Engineering Material, Metol Progr% 91 (6), 107–118 (1967).

    CAS  Google Scholar 

  14. E. A. Murphy and R. G. O’Rourke, Fabrication of Ultrafine Beryllium Wire, Brush Beryllium Co. Report No. 318–240 (August 1963).

    Google Scholar 

  15. S. H. Gelles, Characteristics of Commercial Vacuum Hot Pressed Beryllium III, Battelle Columbus Report on AEC Contract No. W-7405-eng-92 (August 1974).

    Google Scholar 

  16. S. J. Green and F. L. Schierloh, Uniaxial Behavior of S-200 Beryllium, Isotropic I’„Tolytic Boron Nitride, and ATJ-S Graphite at Strain Rates to 10sec and 700F, GM Materials and Structures Laboratory Report No. MSL-68–11 (March 1968).

    Google Scholar 

  17. T. Nicholas, Mechanical Properties of Structural Grades of Beryllium at High Strain Rates, WPAFB Report No. AFML-TR-75–168 (October 1975).

    Google Scholar 

  18. D. E. Munson, Dynamic Behavior of Beryllium, Sandia Report No. SC-RR-67–368 (June 1967).

    Google Scholar 

  19. D. R. Floyd, Causes of the Yield-Point Phenomenon in Commercial Beryllium Products, Dow Chemical Report No. RFP-2061 (February 1974).

    Google Scholar 

  20. A. R. Foos, A. J. Stonehouse, and K. A. Walsh, Micro-Alloying Relationships in Beryllium, National Materials Advisory Board Publication No. NMAB-272, 172–147 (July 1970).

    Google Scholar 

  21. U. S. Lindholm, L. M. Yeakley, and D. L. Davidson, Biaxial Strength Tests on Beryllium and Titanium Alloys, Southwest Research Institute Report No. AFML-TR-74–172 (July 1974).

    Google Scholar 

  22. J. Jortner, Behavior of Beryllium under Biaxial Stress, WESTEC Conference, Los Angeles, California (March 1973).

    Google Scholar 

  23. H. J. Saxton, Sandia Livermore, private communication (April 1974).

    Google Scholar 

  24. T. Nicolas and G. R. Atkins, Notch Tensile Strength of Advanced Structural Grades of Beryllium, WPAFB Report No. AFML-TR-74–252 (April 1975).

    Google Scholar 

  25. R. F. Crawford and A. W. Bums, Strength, Efficiency and Design Data for Beryllium Structures, Lockheed Report No. ASD-TR-61–692 (February 1962).

    Google Scholar 

  26. R. L. Kesterson, The Cryogenic and Ambient Tensile and Compression Properties of Hot-Pressed Beryllium Block, Westinghouse Astronuclear Report No. WANL-TME-1619 (June 1967).

    Google Scholar 

  27. B. C. Odegard, AWRE-KBI-SLL Joint Program, JOWOG 22 Beryllium Physical Metallurgy Committee Meeting (September 1975).

    Google Scholar 

  28. S. C. Chou, AMMRC, private communications (1976–1977).

    Google Scholar 

  29. B. C. Odegard and J. E. Smugeresky, Sandia Corporation, private communication (September 1977).

    Google Scholar 

  30. T. Nicholas and M. J. Sever, Dynamic Compressive Strain Rate Tests on Several Grades on Beryllium, WPAFB Report No. AFML-TR-74–224 (November 1974).

    Google Scholar 

  31. R. B. Fenn-tan, K. Worth, and J. D’Andrea, Development of High Strength Beryllium Materials for Structural Applications, General Electric (Re-Entry Systems Dept.), Document No. 67SD519 (February 1967).

    Google Scholar 

  32. R. G. Kumble and F. L. Schierloh, Mechanical Properties of Materials at High Strain Rates, General Motors Material and Structures Laboratory Report No. SAMSO-TR-68–71-Vol. V I (January 1968).

    Google Scholar 

  33. J. M. Finn and L. C. Koch, Design, Fabrication and Test of an Aerospace Plane Beryllium Wing-Box, McDonnell Aircraft Report No. AFFDL-TR-67–38 (March 1967).

    Google Scholar 

  34. R. L. Greene and G. B. Pinkerton, Beryllium Improvement Program, Lockheed Report No. AFML-TR-73–12 (March 1973).

    Google Scholar 

  35. D. R. Floyd, W. W. Leslie,.D. V. Miley, and R. W. Nokes, The Development of All-Beryllium Riveted Structures, Rockwell International Report No, RFP-2299 (April 1976).

    Google Scholar 

  36. P. C. Paris and D. O. Harris, An Engineering Evaluation of the Status of Utilization of Beryllium from the Viewpoint of Fracture Mechanics, National Academy of Sciences Report No. NMAB-272 (July 1970).

    Google Scholar 

  37. B. King, Fatigue Characteristics of Beryllium, Brush Beryllium Co. Report (May 1967).

    Google Scholar 

  38. J. M. Finn, Advancement of Structural Beryllium Technology, McDonnell Aircraft Fourth Quarterly Progress Report, Contract No. AF33(615)-1512 (May 1965).

    Google Scholar 

  39. D. V. Miley, Bending Fatigue of Ingot-Source Sheet Beryllium, Dow Chemical Report No..RFP-1534 (October 1970).

    Google Scholar 

  40. F. E. Stone, Status of Design and Structural Testing Task Force, JOWOG 22 Advanced Beryllium Testing Meeting (September 1975).

    Google Scholar 

  41. W. C. Overton, Ultrasonic Measurements in Metallic Beryllium at Low Temperatures, J. Cheer. Phys. 18 (1) 113–115 (1950).

    Article  CAS  Google Scholar 

  42. T. Nicholas, WPAFB, private communication (1976).

    Google Scholar 

  43. S. H. Gelles and J. H. Peterson, Characteristics of Commercial Vacuum-Hot-Pressed Beryllium, Battelle Columbus Report No, BMI-X-629 (April 1972)

    Google Scholar 

  44. R. M. Paine and A. J. Stonehouse, Investigation into Effects of Micro-Alloying and. Thermal Treatment on the Properties of Beryllium, Brush-Wellman Report No. BW-TR549 (August 1974).

    Google Scholar 

  45. G. J. London and V. V. Damian, Texture, Bend and Electron Transmission Microscopy Studies on Rockly Flats Ingot Sheet Beryllium, Franklin institute Research Laboratories Report. No. F-C2445 (April 1970).

    Google Scholar 

  46. L. Albertin, Bend Formability and Fracture Toughness of Various Beryllium Foil, Sheet and Brake Grade Block Materials, WESTEC Conference, Los Angeles, California (March 1970).

    Google Scholar 

  47. F. G. Marr and R. T. Torgerson, Evaluation of Beryllium Ingot Sheet, Boeing Report No. D2–114173–1 (July, 1968 ).

    Google Scholar 

  48. T. Nicholas and M. J. Sever, Reverse Loading Effects in Bend Tests on Hot isostatically Pressed (HIP) Beryllium, WPAFB Report No. AFML-TR-73–258 (March 1974).

    Google Scholar 

  49. T. Nicholas, Notched Bend Behavior of Beryllium Over a Wide Range of Strain Rates, WPAFB Report No. AFML-TR-75–177 (December 1975).

    Google Scholar 

  50. L. R. Aronin, S. C. Chou, and J. F. Dignarn, Strain Rate Effects in High-Purity Beryllium, WESTEC Meeting (March 1976).

    Google Scholar 

  51. T. Nicholas, Effect of Plastic Prestrain on the Tensile Strain to Failure of Beryllium, WPAFB Report No. AFML-TR-75–72 (June 1975).

    Google Scholar 

  52. D. R. Christman and F. J. Feistmann, Dynamic Properties of S-200-E Beryllium, General Motors Materials and Structures Laboratory Report No. MSL-71–23 (February 1972).

    Google Scholar 

  53. H. Conrad, J. Hurd, and D. Woodward, The Fracture Toughness of Beryllium, J. Tes!. Eyed. 1 (2), 88–99 (1973).

    CAS  Google Scholar 

  54. Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials, Specification No. E399–74, Annual Book ofASTR’ Standards, Part 10, American Society for Testing and Materials, Philadelphia (1974).

    Google Scholar 

  55. H. Conrad, W. Brown, and G. A. Sargent, Univ. of Kentucky, private communication (September 1976).

    Google Scholar 

  56. R. E. Cooper, AWRE, private communication (October 1976).

    Google Scholar 

  57. G. E. Tardiff, Fracture Toughness of Thin Beryllium Sheet, UCLLL Report No. UCBL51544 (February 1974).

    Google Scholar 

  58. L. Albertin, Evaluation of Kawecki-Berylco New Beryllium Powder Sheet and Block Material, Boeing Report No. RSR-152 (April 1969).

    Google Scholar 

  59. F. A. Pall, The Influence of Strain–Rate and Temperature upon the Fracture Toughness of AMS 7902 Beryllium, Boeing Report No. D2–113565–1 (May 1967).

    Google Scholar 

  60. D. Webster, R. L. Greene, R. W. Lawley, and G. J. London, Factors Affecting the Tensile Strength, Elongation and Impact Resistance of Low Oxide, Hot Isostaticaly Pressed Beryllium Block, Metall. Trans. 7A, 851–856 (June 1976).

    Google Scholar 

  61. R. E. Cooper, The Charpy Impact Properties of Beryllium, Lu.,1. F ract. 11 (4), 649–658 (1975).

    CAS  Google Scholar 

  62. D. W. Lillie, The Metal Beryllium, Chapter VIA (D. W. White, Jr„ and J. E. Burke,eds.). American Society for Metals, Cleveland, Ohio (1955).

    Google Scholar 

  63. R. M. Treco, Thermal Expansion Characteristics of Beryllium, J. tolet. 188, 1274 (1950).

    CAS  Google Scholar 

  64. W. R. Goggin, Optical Materials Study Program, ARPA Contract No. DAAH01–69-C0950, Perkin-Elmer OOD Report No. 41 (February 1970).

    Google Scholar 

  65. G. E. Darwin and J. H. Doddery, Beryllium, Butterworths Scientific Publications, London (1960).

    Google Scholar 

  66. L. A. Grant, Cryogenic Testing of Beryllium for Thermal Conductivity, letter from. Grant and Kamper to Texas Instruments, Inc. (June 1976).

    Google Scholar 

  67. I. 1. Papirov, P. I. Stoyev, and I. A. Taranenki, Kinetics of the Resistance Behavior of Deformed Beryllium during Annealing, Phys. Met. Metal!. 35 (6), 112 (1973).

    Google Scholar 

  68. J. M. Logerot and D. Adenis, Mechanical and Electrical Properties of Beryllium Wire, in: Beryllium Technology, Vol, 1 ( L. McD. Schetky and H. A. Johnson, eds.), Gordon and Breach Science Publishers, New York (1966).

    Google Scholar 

  69. M. Kangilaski, Effects of Neutron Radiation on Stnictural Materials, Radiation Effects Information Center Report 45 (June 1967).

    Google Scholar 

  70. D. V. Miley and R. P. Brugger, Tensile Properties of Bare-Rolled Ingot-Sheet Beryllium from Room Temperature to 800°C, Dow Chemical Report No. RFP-1704 (December 1973)

    Google Scholar 

  71. J. N. Lowe, D. Roberts, J. R. Leech, Helen M. Lindsay, and V, D. Scott, Characterization of Fine Grained Beryllium, AWRE Report No. GRO/44’7W37 (December 1969).

    Google Scholar 

  72. J. P. Denny, G. J. London, and N. P. Pinto, Plastic Deformation of Beryllium Wire, Met, Eng. Q., 97th AIME Annual Meeting, New York (February 1968).

    Google Scholar 

  73. D. R. Stull and H. Prophet, JANAFThermochemical Tables, U.S. Govt. Printing Office, Washington, D.C. (1971).

    Google Scholar 

  74. D. Strominger, J. M. Hollander, and G. T. Seaborg, Table of Isotopes, Rev. Mod. Phys. 30, 585 (1958).

    Article  CAS  Google Scholar 

  75. V. M. Amonenko. V. E. Ivanov, G. F. Tikhinsky, V, A. Finkel, and I. V. Shpagin, Phys. itfet. Metallogr. 12, 77 (1962).

    Google Scholar 

  76. A. J. Martin and A. Moore, The Structure of Beryllium with Particular Reference to Temperatures above 1200`C,.1. Less-Common Met. l, 85 (1959).

    Google Scholar 

  77. A. R. Kaufmann, P. Gordon, and D. W. Lillie, Trans. Am. Soc. lllet. 42 (1950).

    Google Scholar 

  78. O. Kubaschewski and E. L. Evans, Metallurgical Thermochernistry, Pergainon Press, London (1956).

    Google Scholar 

  79. R. B. Hohlen, R. Speiser, and H. L. Johnston, The Vapor Pressures of Inorganic Substances, I. Beryllium, J. Am. Chem. Soc. 70, 3897 (1948).

    Article  Google Scholar 

  80. E. Baur and R. Brunner, Dampfdruckmessungen an hochsiedenden Metallen, Hell,. Chïm,. Acta 17, 958 (1934).

    CAS  Google Scholar 

  81. O. Kubaschewski (Ed.), Beryllium: Physico-Chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, Vienna (1973).

    Google Scholar 

  82. M. C. Udy, H. L. Shaw, and F. W. Boulger, Properties of Beryllium, Nucleonics 11 (5), 52–59 (1953).

    CAS  Google Scholar 

  83. G. J. London, G. H. Keith, and N. P. Pinto, Grain Size and Oxide Content Affect Beryllium’s Properties, Met, Eng. Q. 16 (4), 45–57 (1976).

    Google Scholar 

  84. N. P. Pinto, J. P. Denny, and G. J. London, isostatic Pressing of Beryllium Powder, pp. 489–511, Met. Soc. AIME, TMS No. A7450 (1974).

    Google Scholar 

  85. D. Webster and D. D. Crooks, Factors Influencing the Creep Strength of Hot Pressed Beryllium, Metall. Trans. 6A, 2049–2054 (1975).

    Article  Google Scholar 

  86. D. Webster, Effect of BeO on Creep Strength, JOWOG 22 Beryllium Physical Metallurgy Committee Meeting (September 1975).

    Google Scholar 

  87. D. D. Crooks and D. Webster, Improved Beryllium Ductility Study, Lockheed Report No. LMSC-D400880 (April 1974)

    Google Scholar 

  88. W. O. Shabbits and W. A. Logsdon, S-200 Grade Beryllium Fracture Toughness Properties, J. Test. Eval. 1 (2), 110–118 (1973).

    Article  CAS  Google Scholar 

  89. J. F. Lagedrost, Thermal Conductivity Studies of Beryllium Samples, Battelle Columbus Report (February 1972).

    Google Scholar 

  90. R. P. Tye and J. E. Quinn, The Thermal Conductivity of Hot Pressed Beryllium Block, in: Symposium on Therniophysical Properties, 4th, University of Maryland, College Park, Md., April 1968 ( J. R. Moszynski, ed.), Society of Mechanical Engineers, New York (1968).

    Google Scholar 

  91. R. W. Powell, The Thermal and Electrical Conductivities of Beryllium, Philos. Mag. 44 (353), 645–663 (1953).

    CAS  Google Scholar 

  92. Y. S. Touloukian, Thermophysicai Properties of Hieh Temperature Solid Materials, The Elements, Vol. 1, Macmillan Co., New York (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinto, N.P. (1979). Properties. In: Floyd, D.R., Lowe, J.N. (eds) Beryllium Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0668-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0668-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0670-3

  • Online ISBN: 978-1-4757-0668-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics