Joining III: Diffusion Bonding

  • D. L. Olson
  • A. L. Liby


Diffusion bonding is another process available to the designer for the joining of beryllium. With this process, joining of clean, closely fitting parts is obtained by the application of heat and pressure. The coalescence of the base metal is achieved through atomic transport and mechanical processes at the bonding interface. Diffusion bonding has also been identified in the literature as cold welding, solid state bonding, hot pressure bonding, deformation bonding, solid state pressure welding, gas pressure bonding, and other descriptive headings.(1–8)


Diffusion Bonding Bonding Time Bonding Surface Silver Coating Bonding Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L M. J. Album, Solid state bonding, Weld. J. (Miami) 43, 491–504 (1964).Google Scholar
  2. 2.
    P. M. Bartle, Diffusion bonding: A look at the future, Weld. J. (London) 54, 799–804 (1975).Google Scholar
  3. 3.
    R. F. Tylecote, The Solid Phase Welding of Metals, pp. 217–218, St. Martin’s Press, New York (1968).Google Scholar
  4. 4.
    E. M. Passmore, Solid state welding of beryllium, Weld. J. (Miami) 42, 186s - 189s (1963).Google Scholar
  5. 5.
    A. T. D’Annessa, Diffusion welding of beryllium: molybdenum and tungsten, Met. Progr. 91, 71–74 (1967).Google Scholar
  6. 6.
    T. H. Batzer and R. F. Bunshah, Warm welding of metals in ultrahigh vacuum, J. Vac, Sci. Tech. 4, 19–28 (1967).Google Scholar
  7. 7.
    E. S. Hodge, P. H. Gripshover, and H. D. Hanes, Solid state bonding of beryllium, Beryllium Tech. 2, 689–701 (1964).Google Scholar
  8. 8.
    J. L. Knowles and T. H. Hazlett, High strength low temperature bonding of beryllium and other metals, Weld. J. (Miami) 49, 301s - 310s (1970).Google Scholar
  9. W. A. Bryant, A method for specifying hot isostatic pressure welding parameters, Weld. J. (Miami) 55, 433s - 435s (1975).Google Scholar
  10. 10.
    E. Holmes, Influence of relative interfacial movement and frictional restraint in cold pressure welding, Br. Weld. J. 6, 29–37 (1959).Google Scholar
  11. 11.
    H. A. Mohamed and J. Washborn, Mechanism of solid state pressure welding. Weld. J. (Miami) 55, 302s - 310s (1975).Google Scholar
  12. 12.
    W. i-1. King and W. A. Owczarski, Additional studies on the diffusion welding of titanium, Weld. (Miami) 47, 444s - 450s (1968).Google Scholar
  13. E. S. Karakozov et al.,Calculation of the contact surface in the solid phase welding of metals, Weld. Prod. (USSR) 20(2), 83–86 (1973).Google Scholar
  14. 14.
    B. S. Kasatkin, A. K. Tsarytik, G. K. Kharchenko. and G. N. Kovab, Characteristic of plastic deformation in non-fusion welding, Weld. Prod. (USSR) 13 (7), 4–9 (1966).Google Scholar
  15. 15.
    T. J. Bosworth, Diffusion welding of beryllium: Part 1—Basic studies, Weld. J. (Miami) 51, 579s - 590s (1972).Google Scholar
  16. 16.
    T. J. Bosworth, Diffusion welding of beryllium: Part II—The role of the microalloying elements, Weld. J. (Miami) 52, 38s - 48s (1973).Google Scholar
  17. 17.
    D. Hauser, D. G. Bowden, and R. E. Monroe, Technical Management Report on Diffusion Welding of Wrought Beryllium, Battelle Memorial Institute, Columbus, Ohio (1970).Google Scholar
  18. 18.
    S. H. Gelles, Impurity Effects in Beryllium, Metals and Ceramics Information Center, MC1C-72–06 (March 1972).Google Scholar
  19. J. J. Saxton, A. J. West, and C. R. Burrett, Deformation and failure of brazed joints, Metall. Trans. 2, 999 (1971).CrossRefGoogle Scholar
  20. 20.
    W. G. Moffatt and J. Wulff, l’ensile deformation and fracture of brazed joints, Weld. J. (Miami) 42, 115s - 125s (1963).Google Scholar
  21. 21.
    N. Bredzs, Investigation of factors determining the tensile strength of brazed joints, Weld. J. (Miami) 33, 545s - 563s (1954).Google Scholar
  22. 22.
    M. O’Brien, C. R. Rice, and D. L. Olson, High strength diffusion welding of silver coated base metal, Weld. J. (Miami) 55, 25–27 (1976).Google Scholar
  23. 23.
    D. T. Larson, E. L. Childs, H. H. Doyle, and V. K. Grotzkey, Characterization of Zinc Films on Beryllium Deposited by Zincating, Rockwell International, Rocky Flats Division Report (1976).Google Scholar
  24. 24.
    E. Naimon, D. Vigil, J. Villegas, and L. Williams, Adhesion study of silver films deposited from a hot hollow cathode source,.1. Vac. Sci. Tech. 13, 1131–1134 (1976).CrossRefGoogle Scholar
  25. 25.
    D. G. Williams, Vacuum coating with a hollow cathode source, J. Vac. Sci. Tech. 11, 374376 (1974).Google Scholar
  26. 26.
    V. K. Grotzky, C. R. Rice. J. H. Doyle, and D. L, Olson, The Nature of Mercury-Activated Silver Solid-State Bonds, RFP-2514, Rockwell International, Rocky Flats Plant (1976).CrossRefGoogle Scholar
  27. 27.
    M. O’Brien, D. T. Larson, C. R. Rice, and D, L. Olson, Recommendation for Cleaning Procedure for Solid State Bonding Posts Prior to Coating, Dow Chemical Company, Rocky Flats Plant Report (September 1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • D. L. Olson
    • 1
  • A. L. Liby
    • 2
  1. 1.Metallurgy DepartmentColorado School of MinesGoldenUSA
  2. 2.Rocky Flats PlantRockwell InternationalGoldenUSA

Personalised recommendations