Skip to main content

Thermodynamics of a Non-Equilibrium Quantum System — Resonance Fluorescence

  • Conference paper
  • 260 Accesses

Abstract

The problem of resonance fluorescence from a two-level atom is the subject of intense current research activity [1]. One aspect that has so far received little comment is that it provides a most interesting example of nonequilibrium thermodynamics in a quantum system. Conceptually the situation is simple. The two-level atom is subject to two interactions (a) a coherent interaction with a driving field, (b) an incoherent interaction with a thermal reservoir (spontaneous emission into the radiation field). If the driving field were absent the atom would merely relax into equilibrium with the reservoir and the usual Wigner Weisskopf theory for a damped atom would apply. The effect of the driving field is to maintain the atom away from equilibrium in a new nonequilibrium steady state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The reader is referred to the articles on resonance fluorescence in this volume by C. Cohen-Tannoudji and S. Reynaud, p. 93; L. Mandel and H.J. Kimble, p. 95; H. Walther, p. 99; S. Ezekiel, p. 101; B.R. Mollow, p. 103; C.R. Stroud, Jr. and H.R. Gray, p. 115; W.A. McClean and S. Swain, p. 127; and the references contained therein.

    Google Scholar 

  2. G.S. Agarwal, Z. Physik 258, 409 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  3. H.J. Carmichael and D.F. Walls, Z. Physik B23, 299 (1976).

    ADS  MathSciNet  Google Scholar 

  4. M.O. Scully and W.E. Lamb, Phys. Rev. 159, 208 (1967).

    Article  ADS  Google Scholar 

  5. R. Landauer, IBM Research RC 2960 (1970).

    Google Scholar 

  6. R. Graham and H. Haken, Z. Physik 243, 289 (1971); ibid. 245, 141 (1971).

    Google Scholar 

  7. P.G. Bergman and J.L. Lebowitz, Annals of Physics 1, 1 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Schlogl, Z. Physik 249, 1 (1971).

    Article  ADS  Google Scholar 

  9. I. Prigogine, C. George, F. Henin and L. Rosenfeld, Chemica Scripta 4, 5 (1973).

    Google Scholar 

  10. A.R. Bulsara and W.C. Schieve, J. Chem. Phys. 65, 2532 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this paper

Cite this paper

Walls, D.F. (1978). Thermodynamics of a Non-Equilibrium Quantum System — Resonance Fluorescence. In: Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0665-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0665-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0667-3

  • Online ISBN: 978-1-4757-0665-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics