Advertisement

High-Temperature Coordination Chemistry of Group VIII

  • Keith E. Johnson
  • John R. Dickinson

Abstract

The bulk of our discussion is concerned with electronic spectroscopy but we shall indicate the various other methods available to help in the elucidation of the coordination of Group VIII metal ions at high temperatures. The two types of information which electronic spectroscopy can provide under favorable circumstances are the number and arrangement of ligands about the central metal and the distribution of electronic charge within the moiety, albeit the expression of the latter is usually restricted to a listing of the first few energy levels.

Keywords

Oscillator Strength Diatomic Molecule Group VIII Cobalt Species Molten Salt System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Levy, P. A. Agron, M. A. Bredig, and M. D. Danford, Ann. N. Y. Acad. Sci. 79: 762 (1960).Google Scholar
  2. 2.
    S. C. Wait, Jr., A. T. Ward, and G. J. Janz, J. Chem. Phys. 45: 133 (1966).Google Scholar
  3. 3.
    S. Hafner and N. H. Nachtrieb, J. Chem. Phys. 40: 2891 (1964).Google Scholar
  4. 4.
    J. Brown, UCRL 9944 (UC-4 Chemistry), TID 4500 (16th ed.), December 13, 1961.Google Scholar
  5. 5.
    L. Yarmus, M. Kukk, and B. R. Sundheim, J. Chem. Phys.40: 33 (1964).Google Scholar
  6. 6.
    T. B. Swanson, J. Chem. Phys. 45: 179 (1966).Google Scholar
  7. 7.
    N. H. Nachtrieb, J. Phys. Chem. 66: 1163 (1962).Google Scholar
  8. 8.
    A. Berlin and N. Nghi, Compt. Rend. (C) 262: 1421 (1966).Google Scholar
  9. 9.
    D. Inman, D. G. Lovering, and R. Narayan, Trans. Faraday Soc. 64: 2476 (1968).Google Scholar
  10. 10.
    S. H. White, D. Inman, and B. Jones, Trans. Faraday Soc. 64: 2841 (1968).Google Scholar
  11. 11.
    D. Inman, B. Jones, and S. H. White, J. Inorg. Nucl. Chem. 32: 927 (1970).Google Scholar
  12. 12.
    R. S. Juvet, Jr., V. R. Shaw, and M. A. Khan, J. Ant. Chem. Soc. 91: 3788 (1969).Google Scholar
  13. 13.
    G. J. Janz, Molten Salts Handbook, Academic Press, New York (1967).Google Scholar
  14. 14.
    J. E. Ricci, in: Molten Salt Chemistry( M. Blander, ed.), Wiley-Interscience, New York (1964).Google Scholar
  15. 15.
    C. M. Cook and W. E. Dunn, Jr., J. Phys. Chem. 65: 1505 (1961).Google Scholar
  16. 16.
    K. F. Zmbov and J. L. Margrave, J. Phys. Chem. 70: 3379 (1966).Google Scholar
  17. 17.
    E. Iberson, R. Gut, and D. M. Gruen, J. Phys. Chem. 66: 65 (1962).Google Scholar
  18. 18.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 2nd ed., WileyInterscience, New York (1966).Google Scholar
  19. 19.
    M. M. Jones, Elementary Coordination Chemistry, Prentice-Hall, Englewood Cliffs, N. J. (1964).Google Scholar
  20. 20.
    W. P. Griffith, The Chemistry of the Rarer Platinum Metals, Wiley-Interscience, New York (1967).Google Scholar
  21. 21.
    H. J. Emeleus and A. G. Sharpe (eds.), Advances in Inorganic Chemistry and Radiochemistry, Academic Press, New York (one or two volumes per annum from 1959 ).Google Scholar
  22. 22.
    Progress in Inorganic Chemistry (F. A. Cotton, ed., to Vol. 10 and S. J. Lippard, ed., from Vol. 11), Wiley-Interscience, New York (one or two volumes per annum from 1959).Google Scholar
  23. 23.
    R. L. Carlin (ed.), Transition Metal Chemistry, Marcel Dekker, New York (from 1965 ).Google Scholar
  24. 24.
    E. U. Condon and G. H. Shortley, The Theory of Atonic Spectra, University Press, Cambridge (1935).Google Scholar
  25. 25.
    H. E. White, Introduction to Atomic Spectra, McGraw-Hill, New York (1934).Google Scholar
  26. 26.
    R. Mavrodineanu and H. Boiteux, Flame Spectroscopy, Wiley, Nev.:, York (1965).Google Scholar
  27. 27.
    G. Bract, Phys. Rev. 28: 334 (1926).Google Scholar
  28. 28.
    H. N. Russell, Phys. Rev. 29: 782 (1927).Google Scholar
  29. 29.
    B. G. Wybourne, “Spectroscopic Properties of Rare Earths,” Wiley-Interscience, New York (1965).Google Scholar
  30. 30.
    G. H. Shortley and B. Fried, Phys. Rev. 54: 749 (1938).Google Scholar
  31. 31.
    B. Edlen, in: Handbuch der Physik, Vol. XXVII, Springer-Verlag, Heidelberg (1964).Google Scholar
  32. 32.
    G. Racah, Phys. Rev. 85: 381 (1952).Google Scholar
  33. 33.
    J. C. Slater, Quantum Theory of Atomic Sctructure, McGraw-Hill, New York (1960).Google Scholar
  34. 34.
    E. U. Condon, Phys. Rev. 36: 1121 (1930).Google Scholar
  35. 35.
    B. O. Jordan and E. Wigner, Z. Physik 47: 631 (1928).Google Scholar
  36. 36.
    R. Stevenson, Multiplet Structure of Atoms and Molecules, Saunders, Philadelphia (1965).Google Scholar
  37. 37.
    G. Racah, Phys. Rev. 62: 438 (1942).Google Scholar
  38. 38.
    J. H. Van Vleck, Phys. Rev. 45: 405 (1934).Google Scholar
  39. 39.
    G. W. King, Spectroscopy and Molecular Structure, Holt, Rinehart and Winston, New York (1960).Google Scholar
  40. 40.
    M. Born and R. Oppenheimer, Ann. Physik 84: 457 (1927).Google Scholar
  41. 41.
    G. Herzberg, Molecular Spectra and Molecular Structure, I. Diatomic Molecules, Prentice-Hall, New York (1939).Google Scholar
  42. 42.
    R. S. Mulliken, Rev. Mod. Phys. 3: 89 (1931).Google Scholar
  43. 43.
    F. Hund, Z. Physik36: 657 (1925).Google Scholar
  44. 44.
    R. S. Mulliken, Rev. Mod. Phys. 2: 60 (1930).Google Scholar
  45. 45.
    E. Wigner and E. E. Witmer, Z. Physik 51: 859 (1928).Google Scholar
  46. 46.
    R. S. Mulliken, Rev. Mod. Phys.4: 1 (1932).Google Scholar
  47. 47.
    R. S. Mulliken, Phys. Rev. 36: 1440 (1930).Google Scholar
  48. 48.
    A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules, 3rd ed., Chapman and Hall, London (1968).Google Scholar
  49. 49.
    R. S. Mulliken, Phys. Rev. 32: 186 (1928).Google Scholar
  50. 50.
    R. S. Mulliken, Int. J. Quant. Chem. 1: 103 (1967).Google Scholar
  51. 51.
    W. Heitler and F. London, Z. Physik 44: 455 (1927).Google Scholar
  52. 52.
    J. C. Slater, Phys. Rev. 37: 481 (1931).Google Scholar
  53. 53.
    J. C. Slater, Phys. Rev. 38: 1109 (1931).Google Scholar
  54. 54.
    L. Pauling, J. Arn. Chem. Soc.53: 1367, 3225 (1931).Google Scholar
  55. 55.
    G. Herzberg, Molecular Spectra and Molecular Structure, III. Electronic Spectra and Electronic Structure of Polyatomic Molecule, Van Nostrand, Princeton, N. J. (1966).Google Scholar
  56. 56.
    F. Hund, Z. Physik 51: 759 (1928).Google Scholar
  57. 57.
    F. Hund, Z. Physik 63: 719 (1930).Google Scholar
  58. 58.
    J. E. Lennard-Jones, Trans. Faraday Soc. 25: 668 (1929).Google Scholar
  59. 59.
    J. E. Lennard-Jones, Proc. Roy. Soc. LondonA198: 1, 14 (1949).Google Scholar
  60. 60.
    J. E. Lennard-Jones, J. A. Pople, and G. G. Hall, Proc. Roy. Soc. LondonA202: 155, 166, 323 (1950).Google Scholar
  61. 61.
    D. R. Hartree, Proc. Carob. Phil. Soc. 24: 89 (1928).Google Scholar
  62. 62.
    V. Fock, Z. Physik 61: 126 (1930).Google Scholar
  63. 63.
    L. Brillouin, Actualités Scientifiques(Paris) IV (1934).Google Scholar
  64. 64.
    C. J. Roothaan, Rev. Mod. Phys. 23: 69 (1951).Google Scholar
  65. 65.
    C. J. Roothaan, Rev. Mod. Phys. 32: 179 (1960).Google Scholar
  66. 66.
    W. Moffitt, Rept. Progr. Phys. 17: 173 (1954).Google Scholar
  67. 67.
    P.-O. Löwdin, Adv. Chem. Phys.2: 207 (1959).Google Scholar
  68. 68.
    P.-O. Löwdin, Quantum Theory of Atoms, Molecules and Solids, Academic Press, New York (1966).Google Scholar
  69. 69.
    K. D. Carlson and C. R. Claydon, in: Advances in High-Temperature Chemistry, Vol. 1, p. 43( L. Eyring, ed.), Academic Press, New York (1967).Google Scholar
  70. 70.
    R. A. Berg and O. Sinanoglu, J. Chem. Phys. 32: 1082 (1960).Google Scholar
  71. 71.
    C. K. Jorgensen, Mol. Phys. 7: 417 (1964).Google Scholar
  72. 72.
    C. J. Cheetham and R. F. Barrow, in: Advances in High-Temperature ChemistryVol. 1, p. 7 (L. Eyring, ed.), Academic Press, New York (1967). Google Scholar
  73. 73.
    S. B. Schneiderman, Int. J. Quant. Chem. 2: 89 (1968).Google Scholar
  74. 74.
    J. S. Griffith, The Theory of Transition-Metal Ions, University Press, Cambridge (1961).Google Scholar
  75. 75.
    F. A. Cotton, Chemical Applications of Group Theory, Wiley-Interscience, New York (1963).Google Scholar
  76. 76.
    C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Addison-Wesley, Reading (1962).Google Scholar
  77. 77.
    C. K. Jorgensen, Adv. Chem. Phys. 5: 33 (1963).Google Scholar
  78. 78.
    Y. Tanabe and S. J. Sugano, J. Phys. Soc. Japan 9: 753, 766 (1954).Google Scholar
  79. 79.
    M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3-j and 6-j Symbols, MIT Press, Cambridge, Mass. (1959).Google Scholar
  80. 80.
    C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for p“, d”, and fn Configurations, MIT Press, Cambridge, Mass. (1963).Google Scholar
  81. 81.
    G. Racah, Phys. Rev. 61: 186 (1942).Google Scholar
  82. 82.
    G. Racah, Phys. Rev. 63: 367 (1943).Google Scholar
  83. 83.
    G. Racah, Phys. Rev. 76: 1352 (1949).Google Scholar
  84. 84.
    L. E. Biedenharn and H. Van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).Google Scholar
  85. 85.
    W. Moffitt, G. L. Goodman, M. Fred, and B. Weinstock, Mol. Phys. 2: 109 (1959).Google Scholar
  86. 86.
    A. D. Liehr, J. Phys. Cheer. 64: 43 (1960).Google Scholar
  87. 87.
    K. W. Fung and K. E. Johnson, J. Inorg. Noel. Chem. 33: 1407 (1971).Google Scholar
  88. 88.
    J. S. Griffith, Disc. Faraday Soc. 26: 173 (1958).Google Scholar
  89. 89.
    A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. London A205: 135 (1951).Google Scholar
  90. 90.
    R. F. Fenske, D. S. Martin, Jr., and K. Ruedenberg, brorg. Chun. 1: 441 (1962).Google Scholar
  91. 91.
    D. S. Martin, Jr., M. A. Tucker, and A. J. Kassman, Inorg. Chem. 5: 1298 (1966).Google Scholar
  92. 92.
    H. B. Gray and C. J. Ballhausen, J. Am. Chem. Soc. 85: 260 (1963).Google Scholar
  93. 93.
    W. R. Mason, III and H. B. Gray, J. Am. Chem. Soc. 90: 5721 (1968).Google Scholar
  94. 94.
    H. B. Gray, Transition Metal Chemistry 1: 239 (1965).Google Scholar
  95. 95.
    J. Chatt, L. E. Orgel, and G. A. Gamlen, J. Chem. Soc.1958: 486.Google Scholar
  96. 96.
    J. T. Hougen, G. E. Leroi, and T. C. James, J. Cheer. Phys. 34: 1670 (1961).Google Scholar
  97. 97.
    C. W. DeKock and D. M. Gruen, J. Chem. Phys. 44: 4387 (1966).Google Scholar
  98. 98.
    C. W. DeKock and D. M. Gruen, J. Chem. Phys. 46: 1096 (1967).Google Scholar
  99. 99.
    H. B. Gray, in: Structural Chemistry and Molecular Biology, (A. Rich and N. Davidson, eds.), p. 783, Freeman, San Francisco (1968).Google Scholar
  100. 100.
    C. J. Ballhausen and H. B. Gray, Inorg. Chem. 1: 111 (1962).Google Scholar
  101. 101.
    P. T. Manoharan and H. B. Gray, Inorg. Chem. 5: 823 (1966).Google Scholar
  102. 102.
    C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, Benjamin, New York (1964).Google Scholar
  103. 103.
    H. Basch, Ph. D. thesis, Columbia Univ., New York (1966).Google Scholar
  104. 104.
    M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20: 837 (1952).Google Scholar
  105. 105.
    H. Basch, A. Viste, and H. B. Gray, Theoret. Chico. Acta 3: 458 (1965).Google Scholar
  106. 106.
    H. Basch, A. Viste, and H. B. Gray, J. Chem. Phys. 44: 10 (1966).Google Scholar
  107. 107.
    S. Yamada and R. Tsuchida, Bull. Chem. Soc. Japan 26: 15 (1953).Google Scholar
  108. 108.
    R. F. Barrow and M. Senior, Nature 223: 1359 (1969).Google Scholar
  109. 109.
    W. J. M. Gissane and R. F. Barrow (1966); unpublished, cf. Ref. 72.Google Scholar
  110. 110.
    J. R. Marquart and J. Berkowitz, J. Chem. Phys. 39: 283 (1963).Google Scholar
  111. 111.
    P. Coppens, S. Smoes, and J. Drowart, Trans. Faraday Soc. 64: 630 (1968).Google Scholar
  112. 112.
    B. Rosen, Données Spectroscopiques Concernant les Molécules Diatomiques, Hermann, Paris (1951).Google Scholar
  113. 113.
    S. P. Reddy and P. T. Rao, J. Mol. Spectry. 4: 16 (1960).Google Scholar
  114. 114.
    S. P. Reddy, J. Sci. Ind. Res. (India) 18B: 188 (1959).Google Scholar
  115. 115.
    A. Kant and B. Strauss, J. Chem. Phys. 41: 3806 (1964).Google Scholar
  116. 116.
    L. Kynning and H. Neuhaus, Z. Naturforsch. 18a: 1142 (1963).Google Scholar
  117. 117.
    S. V. K. Rao and P. T. Rao, Indian J. Phys. 35: 556 (1961).Google Scholar
  118. 118.
    S. V. K. Rao and P. T. Rao, Indian J. Phys. 36: 609 (1962).Google Scholar
  119. 119.
    A. Kant, J. Chem. Phys. 41: 1872 (1964).Google Scholar
  120. 120.
    N. Aslund, H. Neuhaus, A. Lagerqvist, and E. Andersen, Arkiv Fysik 28: 271 (1964).Google Scholar
  121. 121.
    R. T. Grimley, R. P. Burns, and M. G. Inghram, J. Chem. Phys. 35: 551 (1961).Google Scholar
  122. 122.
    V. G. Krishnamurty, Indian J. Phys. 27: 354 (1953).Google Scholar
  123. 123.
    E. M. Bulewiez, L. F. Phillips, and T. M. Sugden, Trans. Faraday Soc. 57: 921 (1961).Google Scholar
  124. 124.
    S. P. Reddy and P. T. Rao, Proc. Phys. Soc. (London) 75: 275 (1960).Google Scholar
  125. 125.
    S. V. K. Rao, S. P. Reddy, and P. T. Rao, Z. Physik 166: 261 (1962).Google Scholar
  126. 126.
    A. Kant, J. Chem. Phys. 44: 2450 (1966).Google Scholar
  127. 127.
    N. S. McIntyre, A. V. Auwera-Mahieu, and J. Drowart, Trans. Faraday Soc. 64: 3006 (1968).Google Scholar
  128. 128.
    R. Scullman, private communication.Google Scholar
  129. 129.
    V. Raziunas, G. Macur, and S. Katz, J. Chem. Phys. 43: 1010 (1965).Google Scholar
  130. 130.
    A. Lagerqvist, H. Neuhaus, and R. Scullman, Z. Naturforsch. 20a: 751 (1965).Google Scholar
  131. 131.
    A. Lagerqvist and R. Scullman, Arkiv Fysik 32: 479 (1966).Google Scholar
  132. 132.
    J. H. Norman, H. G. Staley, and W. E. Bell, J. Phys. Chem. 68: 662 (1964).Google Scholar
  133. 133.
    M. Ackerman, F. E. Stafford, and G. Verhaegen, J. Chem. Phys. 36: 1560 (1962).Google Scholar
  134. 134.
    C. Malmberg, R. Scullman, and P. Nylén, Arkiv Fysik 39: 495 (1969).Google Scholar
  135. 135.
    J. H. Norman, H. G. Staley, and W. E. Bell, J. Phys. Chem. 69: 1373 (1965).Google Scholar
  136. 136.
    A. Gatterer, J. Junkes, E. W. Salpeter, and B. Rosen,;%Jolecular Spectra of Metallic Oxides, Specola Vaticana, Città del Vaticano (1957).Google Scholar
  137. 137.
    K. Jansson, R. Scullman, and B. Yttermo, Chem. Phys. Letters 4: 188 (1969).Google Scholar
  138. 138.
    J. H. Norman, H. G. Staley, and W. E. Bell, J. Chem. Phys. 42: 1123 (1965).Google Scholar
  139. 139.
    R. Scullman, Arkiv Fysik 28: 255 (1964).Google Scholar
  140. 140.
    V. A. Loginov, Opt. Spectry. (USSR) 20: 88 (1966).Google Scholar
  141. 141.
    R. Scullman and B. Yttermo, Arkiv Fysik 33: 231 (1966).Google Scholar
  142. 142.
    M. A. Catalan, F. Rohrlich, and A. G. Shenstone, Proc. Roy. Soc. London A221: 421 (1954).Google Scholar
  143. 143.
    R. F. Barrow, private communication.Google Scholar
  144. 144.
    C. B. Alcock and G. W. Hooper, Proc. Roy. Soc. London A254: 551 (1960).Google Scholar
  145. H. Schäfer and A. Tebben, Z. Anorg. Allgem. Chem. 304: 317 (1960).Google Scholar
  146. 146.
    A. Büchler and J. B. Berkowitz-Mattuck, in: “Advances in High Temperature Chemistry” ( L. Eyring, ed.), Academic Press, New York (1967).Google Scholar
  147. 147.
    A. Büchler, J. L. Stauffer, and W. Klemperer, J. Chem. Phys. 40: 3471 (1964).Google Scholar
  148. 148.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave, High Temp. Sci. 1: 76 (1969).Google Scholar
  149. 149.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Chem. Soc. D. 1969: 1452.Google Scholar
  150. 150.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Chem. Phys. 51: 2648 (1969).Google Scholar
  151. 151.
    D. E. Milligan, M. E. Jacose, and J. D. McKinley, J. Chem. Phys. 42: 902 (1965).Google Scholar
  152. 152.
    K. R. Thompson and K. D. Carlson, J. Chem. Phys. 49: 4379 (1968).Google Scholar
  153. 153.
    A. Trutia and M. Musa, Spectrochim. Acta 23: 1165 (1967).Google Scholar
  154. 154.
    D. M. Gruen and C. W. DeKock, J. Chem. Phys. 43: 3395 (1965).Google Scholar
  155. 155.
    C. W. DeKock and D. M. Gruen, J. Chem. Phys. 49: 4521 (1968).Google Scholar
  156. 156.
    K. F. Zmbov and J. L. Margrave, J. Inorg. Nucl. Chem. 29: 673 (1967).Google Scholar
  157. 157.
    R. C. Schoonmaker, A. H. Friedman, and R. F. Porter, J. Chem. Phys. 31: 1586 (1959).Google Scholar
  158. 158.
    N. W. Gregory and R. O. Macharen, J. Phys. Chem. 59: 110 (1955).Google Scholar
  159. 159.
    W. E. Bell, U. Merten, and M. Tagami, J. Phys. Chem. 65: 510 (1961).Google Scholar
  160. 160.
    H. Schäfer, U. Wiese, K. Rinke, and K. Brendel Angew. Chem. 6: 253 (1967).Google Scholar
  161. 161.
    F. A. Cotton and T. E. Haas, Inorg. Chern. 3: 10 (1964).Google Scholar
  162. 162.
    W. E. Bell, M. C. Garrison, and U. Merten, J. Phys. Chem. 65: 517 (1961).Google Scholar
  163. 163.
    V. S. Rao and P. Kusch, J. Chem. Phys. 34: 832 (1961).Google Scholar
  164. 164.
    J. A. Plambeck, J. Chem. Eng. Data 12: 77 (1967).Google Scholar
  165. 165.
    H. A. Laitinen and C. H. Liu, J. Am. Chem. Soc. 80: 1015 (1958).Google Scholar
  166. 166.
    H. A. Laitinen and J. W. Pankey, J. Am. Chem. Soc. 81: 1053 (1959).Google Scholar
  167. 167.
    H. A. Laitinen and J. A. Plambeck, J. Am. Chem. Soc. 87: 1202 (1965).Google Scholar
  168. 168.
    S. N. Flengas and T. R. Ingraham, J. Electrochem. Soc. 106: 714 (1959).Google Scholar
  169. 169.
    H. E. Bartlett and K. E. Johnson, J. Electrochem. Soc. 114: 457 (1967).Google Scholar
  170. 170.
    K. E. Johnson and H. A. Laitinen, J. Electrochem. Soc. 110: 314 (1963).Google Scholar
  171. 171.
    W. J. Hamer, M. S. Malmberg, and B. Rubin, J. Electrochem. Soc. 103: 8 (1956).Google Scholar
  172. 172.
    W. J. Hamer, M. S. Malmberg, and B. Rubin, J. Electrochem. Soc. 112: 750 (1965).Google Scholar
  173. 173.
    G. W. Mellors and S. Senderoff, J. Electrochem. Soc. 112: 642 (1965).Google Scholar
  174. 174.
    S. V. Winbush, E. Griswold, and J. Kleinberg, J. Am. Chem. Soc. 83: 3197 (1961).Google Scholar
  175. 175.
    W. L. Magnuson, E. Griswold, and J. Kleinberg, Marg. Chem. 3: 88 (1964).Google Scholar
  176. 176.
    D. M. Gruen, J. Inorg. Nucl. Chem. 4: 74 (1957).Google Scholar
  177. 177.
    N. W. Silcox and H. M. Haendler, J. Phys. Chem. 64: 303 (1960).Google Scholar
  178. 178.
    G. Harrington and B. R. Sundheim, Ann. N. Y. Acad. Sci.79: 950 (1960).Google Scholar
  179. 179.
    S. Balt, Rec. Tray. Chim. des Pay-Bas 86: 1025 (1967).Google Scholar
  180. 180.
    N. Islam, Ph. D. thesis, New York Univ. (1968).Google Scholar
  181. 181.
    B. Zaslow and R. E. Rundle, J. Phys. Chem. 61: 490 (1957).Google Scholar
  182. 182.
    S. Balt, Mol. Phys. 14: 233 (1968).Google Scholar
  183. 183.
    A. M. A. Verwey and S. Balt, private communication.Google Scholar
  184. 184.
    D. M. Gruen and R. L. McBeth, Nature 194: 468 (1962).Google Scholar
  185. 185.
    D. M. Gruen and R. L. McBeth, Pure Appl. Chem. 6: 23 (1963).Google Scholar
  186. 186.
    H. A. Dye and D. M. Gruen, Inorg. Chem. 3: 836 (1964).Google Scholar
  187. 187.
    J. P. Young, U. S. At. Energy Comm. ORNL-P-403 (1964).Google Scholar
  188. 188.
    J. P. Young, Inorg. Chem. 8: 825 (1969).Google Scholar
  189. 189.
    A. D. Liehr and C. J. Ballhausen, J. Mol. Spectry. 2: 342 (1958).Google Scholar
  190. 190.
    D. M. Gruen, Nature 178: 1181 (1956).Google Scholar
  191. 191.
    I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 134: 1374 (1960).Google Scholar
  192. 192.
    I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 135: 94 (1960).Google Scholar
  193. 193.
    I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 139: 120 (1961).Google Scholar
  194. 194.
    I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 140: 374 (1961).Google Scholar
  195. 195.
    K. W. Fung and K. E. Johnson, Can. J. Chem. 47: 4699 (1969).Google Scholar
  196. 196.
    J. R. Dickinson and K. E. Johnson, J. Mol. Spectry. 36: 1 (1970).Google Scholar
  197. 197.
    K. E. Johnson and T. S. Piper, Disc. Faraday Soc. 32: 32 (1962).Google Scholar
  198. 198.
    J. A. Duffy, F. P. Glasser, and M. D. Ingram, J. Chem. Soc. (A) 1968: 551.Google Scholar
  199. 199.
    J. A. Duffy and M. D. Ingram, J. Chem. Soc. (A) 1969: 2398.Google Scholar
  200. 200.
    R. A. Bailey, M. El Guindy, and J. A. Walden, Inorg. Chem. 8: 2526 (1969).Google Scholar
  201. 201.
    J. P. Young and J. C. White, Anal. Chem. 32: 799 (1960).Google Scholar
  202. 202.
    B. R. Sundheim and M. Kukk, Disc. Faraday Soc. 32: 49 (1962).Google Scholar
  203. 203.
    M. Kukk, Ph. D. thesis, New York Univ. (1964).Google Scholar
  204. 204.
    H. C. Egghart, J. Phys. Chem. 73: 4014 (1969).Google Scholar
  205. 205.
    H. A. Dye and D. M. Gruen, Inorg. Chem. 4: 1173 (1965).Google Scholar
  206. 206.
    K. W. Fung and K. E. Johnson, Can. J. Chem. 48: 3635 (1970).Google Scholar
  207. 207.
    C. A. Angell and D. M. Gruen, J. Inorg. Nucl. Chem. 29: 2243 (1967).Google Scholar
  208. 208.
    H. A. Oye and D. M. Gruen, in: Selected Topics in High Temperature Chemistry, ( T. Forland, K. Grjotheim, K. Motzfeldt, and S. Urnes, eds.), University Press, Oslo (1966).Google Scholar
  209. 209.
    D. M. Gruen, in: Fused Salts(B. R. Sundheim, ed.), p. 322, McGraw-Hill, New York (1964).Google Scholar
  210. 210.
    J. R. Dickinson and K. E. Johnson J. Mol. Spectry. 33 :414 (1970). Google Scholar
  211. 211.
    D. K. Straub, R. S. Drago, and J. T. Donoghue Inorg. Chem. 1:848 (1962). Google Scholar
  212. 212.
    F. A. Cotton and J. G. Bergman J. Am. Chem. Soc. 86:2941 (1964). Google Scholar
  213. 213.
    R. E. Isbell, E. W. Wilson, Jr., and D. F. Smith J. Phys. Chem. 70:2493 (1966). Google Scholar
  214. 214.
    E. W. Wilson, private communication.Google Scholar
  215. 215.
    R. Stahl-Breda and W. Low Phys. Rev. 113:775 (1959). Google Scholar
  216. 216.
    C. Simo, E. Banks, and S. Holt Inorg. Chem. 8:1446 (1969). Google Scholar
  217. 217.
    J. P. Young, private communication.Google Scholar
  218. 218.
    R. Pappalordo Spectrochim. Acta 19:2093 (1963). Google Scholar
  219. 219.
    A. D. Liehr and C. J. Ballhausen J. Mol. Spectry. 4:190 (1960). Google Scholar
  220. 220.
    D. M. Gruen, private communication.Google Scholar
  221. 221.
    M. Goffman, Ph. D. thesis, Temple Univ. (1966).Google Scholar
  222. 222.
    J. G. Bergman, Jr., and F. A. Cotton, Inorg. Chem. 5: 1420 (1966).Google Scholar
  223. 223.
    D. M. Gruen and R. L. McBeth, J. Phys. Chem. 63: 393 (1959).Google Scholar
  224. 224.
    C. H. Liu, J. Hasson, and G. P. Smith, Inorg. Chem. 7: 2244 (1968).Google Scholar
  225. 225.
    J. R. Dickinson, Ph. D. thesis, Univ. of Sask. (1969).Google Scholar
  226. 226.
    T. R. Griffiths, Chem. Comm. 1967: 1222.Google Scholar
  227. 227.
    G. P. Smith, C. H. Liu, and T. R. Griffiths, J. Am. Chem. Soc. 86: 4796 (1964).Google Scholar
  228. 228.
    G. P. Smith and C. R. Boston, J. Chem. Phys. 43: 4051 (1965).Google Scholar
  229. 229.
    C. R. Boston and G. P. Smith, J. Am. Chem. Soc. 85: 1006 (1963).Google Scholar
  230. 230.
    G. P. Smith, C. R. Boston, and J. Brynestad, J. Chem. Phys. 45: 829 (1966).Google Scholar
  231. 231.
    C. R. Boston, J. Brynestad, and G. P. Smith, J. Chem. Phys.47: 3193 (1967).Google Scholar
  232. 232.
    J. Brynestad, C. R. Boston, and G. P. Smith, J. Chem. Phys. 47: 3179 (1967).Google Scholar
  233. 233.
    C. R. Boston and G. P. Smith, J. Phys. Chem. 62: 409 (1958).Google Scholar
  234. 234.
    B. R. Sundheim and G. Harrigton, J. Chem. Phys. 31: 700 (1959).Google Scholar
  235. 235.
    J. Brynestad, H. L. Yakel, and G. P. Smith, J. Chem. Phys. 45: 4652 (1966).Google Scholar
  236. 236.
    J. Brynestad and G. P. Smith, J. Chem. Phys. 47: 3190 (1967).Google Scholar
  237. 237.
    C. A. Angell and D. M. Gruen J. Phys. Chem. 70: 1601 (1966).Google Scholar
  238. 238.
    W. E. Smith, J. Brynestad, and G. P. Smith, J. Am. Chem. Soc. 89: 5983 (1967).Google Scholar
  239. 239.
    W. E. Smith, J. Brynestad, and G. P. Smith, J. Chem. Phys. 52: 3890 (1970).Google Scholar
  240. 240.
    G. P. Smith and S. Von Wimbush, J. Am. Chem. Soc.88: 2127 (1966).Google Scholar
  241. 241.
    C. R. Boston, C. H. Liu, and G. P. Smith, Inorg. Chem. 7: 1938 (1968).Google Scholar
  242. 242.
    C. K. Jorgensen, Acta Chem. Scand. 9: 1362 (1955).Google Scholar
  243. 243.
    G. P. Smith, in: Molten Salt Chemistry ( M. Blander, ed.), McGraw-Hill, New York (1964).Google Scholar
  244. 244.
    K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130: 512 (1963).Google Scholar
  245. 245.
    C. K. Jorgensen, Mol. Phys. 1: 410 (1958).Google Scholar
  246. 246.
    G. P. Smith and C. R. Boston, J. Chem. Phys. 46: 412 (1967).Google Scholar
  247. 247.
    J. Brynestad and G. P. Smith, J. Am. Chem. Soc. 92: 3198 (1970).Google Scholar
  248. 248.
    A. D. Liehr and C. J. Ballhausen, Ann. Phys. (New York) 6: 134 (1959).Google Scholar
  249. 249.
    W. Trzebiatowski and J. Mulak, Bull. Acad. Sci. Pol. 13: 759 (1965).Google Scholar
  250. 250.
    B. N. Figgis and J. Lewis, Prog. Inorg. Chem. 6: 37 (1964).Google Scholar
  251. 251.
    C. K. Jorgensen, Acta Chem. Scand. 10: 518 (1956).Google Scholar
  252. 252.
    C. K. Jorgensen, Mol. Phys. 2: 309 (1959).Google Scholar
  253. 253.
    J. R. Dickinson and K. E. Johnson, Mol. Phys. 19: 19 (1970).Google Scholar
  254. 254.
    R. B. Johannesen and G. A. Candela, Inorg. Chem. 2: 67 (1963).Google Scholar
  255. 255.
    E. von Blasius and W. Preetz, Z. Anorg. Allgem. Chem. 335: 1 (1965).Google Scholar
  256. 256.
    L. L. Larson and C. S. Garner, J. Am. Chem. Soc. 76: 2180 (1954).Google Scholar
  257. 257.
    P. B. Dorain, H. H. Patterson, and P. C. Jordon, J. Chem. Phys. 49: 3845 (1968).Google Scholar
  258. 258.
    P. C. Jordan, H. H. Patterson, and P. B. Dorain, J. Chem. Phys. 49: 3858 (1968).Google Scholar
  259. 259.
    C. K. Jorgensen, Acta Chem. Scand. 16: 793 (1962).Google Scholar
  260. 260.
    R. Dingle, J. Mol. Spectry. 18: 276 (1965).Google Scholar
  261. 261.
    F. B. Ogilvie and O. G. Holmes, Can. J. Chem. 44: 447 (1966).Google Scholar
  262. 262.
    J. R. Dickinson and K. E. Johnson, Can. J. Chem. 45: 1631 (1967).Google Scholar
  263. 263.
    J. R. Dickinson and K. E. Johnson, Can. J. Chem. 45: 2457 (1967).Google Scholar
  264. 264.
    J. Chatt, L. E. Orgel, and G. A. Gamlen, J. Chem. Soc.1958: 486.Google Scholar
  265. 265.
    C. K. Jorgensen, Acta Chem. Scand. 10: 500 (1956).Google Scholar
  266. 266.
    R. A. Bailey and J. A. McIntyre, Inorg. Chem. 5: 1824 (1966).Google Scholar
  267. 267.
    D. S. Martin and C. A. Lenhardt, Inorg. Chem. 3: 1368 (1964).Google Scholar
  268. 268.
    A. J. McCaffery, P. N. Schatz, and P. J. Stephens, J. Am. Chem. Soc. 90: 5730 (1968).Google Scholar
  269. 269.
    P. Day, M. J. Smith, and R. J. P. Williams, J. Chem. Soc. A 1968:668. Google Scholar
  270. 270.
    H. B. Gray, J. Chem. Ed. 41:2 (1964).Google Scholar
  271. 271.
    L. Sacconi, Pure Appl. Chem. 17: 95 (1968).Google Scholar
  272. 272.
    K. E. Johnson, Electrochim. Acta 11: 129 (1966).Google Scholar
  273. 273.
    C. K. Jorgensen, in: Halogen Chemistry, Vol. 1, p. 265, Academic Press, New York (1967).Google Scholar
  274. 274.
    B. N. Figgis and J. Lewis, in: Technique of Inorganic Chemistry ( H. B. Jonassen and A. Weissberger, eds.), Vol. IV, Wiley-Interscience, New York (1965).Google Scholar
  275. 275.
    L. F. Audrieth and J. Kleinberg, Nonaqueous Solvents, Wiley, New York (1958).Google Scholar
  276. 276.
    L. F. Audrieth, A. Long, and R. E. Edwards, J. Am. Chem. Soc. 58: 428 (1936).Google Scholar
  277. 277.
    K. E. Johnson and M. E. Stone, Can. J. Chem. 49: 3836 (1971).Google Scholar
  278. 278.
    G. Maki, J. Chem. Phys. 29: 162 (1958).Google Scholar
  279. 279.
    D. W. Smith, Inorg. Chim. Acta 5: 231 (1971).Google Scholar
  280. 280.
    S. Suzuki and K. Tanaka, Nippon Kinzoku Gakkaishi 34:461 (1970); Chem. Abstr. 73:30356v(1970).Google Scholar
  281. 281.
    A. J. Barnes and H. E. Hallam, Quart, Rev. 23: 392 (1969).Google Scholar
  282. 282.
    T. Folkman and J. A. Plambeck, Can. J. Chem. 50: 3911 (1972).Google Scholar
  283. 283.
    J. R. Dickinson and M. E. Stone, Can. J. Chem. 50: 2946 (1972).Google Scholar
  284. 284.
    K. W. Fung and K. E. Johnson, Inorg. Chem. 10: 1347 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • Keith E. Johnson
    • 1
  • John R. Dickinson
    • 2
  1. 1.Department of ChemistryUniversity of Saskatchewan, Regina CampusReginaCanada
  2. 2.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations