Selective Systems in Somatic Cell Genetics

  • Ernest H. Y. Chu
  • Sandra S. Powell
Part of the Advances in Human Genetics book series (AHUG, volume 7)


Experimental mutagenesis, cell hybridization, and intercellular gene transfer appear to be the three most significant technical developments in recent years that have stimulated rapid advances in somatic cell genetics. The ability to induce mutations in animal and plant somatic cells in culture enriches the genetic variability of the cell populations for further genetic and biochemical analysis. The process of mutagenesis and mutation rates in high eukaryotic cells can thus be studied and compared with those known in prokaryotes. The success of cell fusion between diverse parental genomes into multinucleate heterokaryons or synkaryonic hybrids has also led to a variety of investigative possibilities, among which are the studies of genomic interactions and gene expression, genetic complementation, recombination, segregation, and mapping of genes. However, parasexual transfer of genetic material from one cell to another is not limited to the process of fusion between intact cells. Successful attempts have been reported in which isolated DNA, chromosomes, or nuclear fragments have been introduced into living mammalian somatic cells. The expression of heterologous gene(s) in a recipient cell and the transmission of the “acquired” character (s) to cell progeny are problems of fundamental interest and significance.


Somatic Cell Somatic Cell Hybrid Chinese Hamster Cell Auxotrophic Mutant G6PD Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adhya, S., and Schwartz, M., 1971, Phosphoglucomutase mutants of Escherichia coli K12, J. Bacteriol. 108: 621–626.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Adler, H. I., Fisher, W. D., Cohen, A., and Hardigree, A. A., 1966, Miniature Escherichia coli cells deficient in DNA, Proc. Natl. Acad. Sci. U.S.A. 57: 321–326.Google Scholar
  3. 3.
    Adoutte, A., and Beissen, J., 1970, Cytoplasmic inheritance of erythromycin resistant mutations in Paramecium aurelia, Mol. Gen. Genet. 108: 70–77.PubMedGoogle Scholar
  4. 4.
    Albertini, R. J., and DeMars, R., 1970, Diploid azaguanine resistant mutants of cultured human fibroblasts, Science 169: 482–485.Google Scholar
  5. 5.
    Albertini, R. J., and DeMars, R., 1973, Somatic cell mutation. Detection and quantification of X-ray-induced mutation in cultured, diploid human fibroblasts, Mutat. Res. 18: 199–224.PubMedGoogle Scholar
  6. 6.
    Albrecht, A. M., Biedler, J. L., and Hutchison, D. J., 1972, Two different species of dihydrofolate reductase in mammalian cells differentially resistant to amethopterin and methasquin, Cancer Res. 32: 1539–1546.PubMedGoogle Scholar
  7. 7.
    Arlett, C. F., and Harcourt, S. A., 1972, The induction of 8-azaguanine-resistant mutants in cultured Chinese hamster cells by ultraviolet light. The effect of changes in post-irradiation conditions, Mutat. Res. 14: 431–437.PubMedGoogle Scholar
  8. 8.
    Arlett, C. F., and Harcourt, S. A., 1972, Expression time and spontaneous mutability in the estimation of induced mutation frequency following treatment of Chinese hamster cells by ultraviolet light, Mutat. Res. 16: 301–306.PubMedGoogle Scholar
  9. 9.
    Atkins, J. H., and Gartler, S. M., 1968, Development of a nonselective technique for studying 2,6,diaminopurine resistance in an established murine cell line, Genetics 60: 781–792.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Barski, G., 1973, Somatic hybridization in studies of heredity of cell malignancy, in “Tissue Culture. Methods and Application” (P. F. Kruse, Jr. and M. K. Patterson, Jr., eds.), pp. 469–475, Academic Press, New York.Google Scholar
  11. 11.
    Barski, G., Sorieul, S., and Cornefert, F., 1960, Production dans des cultures in vitro de deux souches cellulaires en association, de cellules de caractére “hybrid”, C. R. Acad. Sci. 251: 1825–1827.Google Scholar
  12. 12.
    Basilico, C., and Meiss, H. K., 1974, Methods for selecting and studying temperature-sensitive mutants of BHK-21 cells, in “Methods in Cell Biology” Vol. 8 (D. M. Prescott, ed.), pp. 1–22, Academic Press, New York.Google Scholar
  13. 13.
    Beadle, G. W., and Tatum, E. L., 1945, Neurospora II. Methods of producing and detecting mutants concerned with nutritional requirements, Am. J. Bot. 32: 678–686.Google Scholar
  14. 14.
    Beale, G. H., 1969, A note on the inheritance of erythromycin-resistance in Paramecium aurelia, Genet. Res. 14: 341–342.PubMedGoogle Scholar
  15. 15.
    Beaudet, A. L., Roufa, D. J., and Caskey, C. T., 1973, Mutations affecting the structure of hypoxanthine-guanine phosphoribosyltransferase in cultured Chinese hamster cells, Proc. Natl. Acad. Sci. U.S.A. 70: 320–324.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bendich, A., Borenfreund, E., and Steinberg, S., 1974, Penetration of somatic mammalian cells by sperm, Science 183: 857–859.PubMedGoogle Scholar
  17. 17.
    Bennett, L. L., Vail, M. H., Chumley, S., and Montgomery, J. A., 1966, Activity of adenosine analogs against a cell culture line resistant to 2-fluoroadenine, Biochem. Phamacol. 15: 1719–1728.Google Scholar
  18. 18.
    Benzer, S., and Freese, E., 1958, Induction of specific mutations with 5-bromouracil, Proc. Natl. Acad. Sci. U.S.A. 44: 112–119.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Beutler, E., and Yoshida, A., 1973 Human glucose-6-phosphate dehydrogenase variants: a supplementary tabulation, Ann. Hum. Genet. 37: 151–156.PubMedGoogle Scholar
  20. 20.
    Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., and Solnimski, P., 1971, La recombinaison des mitochondries chez Saccharooz ces cerevisiae, Bull. Inst. Pasteur Paris 69: 215–239.Google Scholar
  21. 21.
    Boone, C., Chen, T. R., and Ruddle, F. H., 1972, Assignment of three human genes to chromosomes (LDH-A to 11; TK to 17; and IDH to 20) and evidence for translocation between human and mouse chromosomes in somatic cell hybrids, Proc. Natl. Acad. Sci. U.S.A. 69: 510–514.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Borst, P., 1972, Mitochondria] nucleic acids, Anna. Rev. Biochem. 41: 333–376.Google Scholar
  23. 23.
    Boume, H. R., Coffino, P., Melmon, K. L., Tomkins, G. M.. and Weinstein. Y., 1975, Genetic analysis of cyclic AMP in a mammalian cell, in “Advances in Cyclic Nucleotide Research” Vol. 5 (G. I. Drummond, P. Greengard, and G. A. Robinson, eds.), pp. 771–786, Raven Press, New York.Google Scholar
  24. 24.
    Bourne, H. R., Coffino, P., and Tomkins, G. M.. 1975, Selection of a variant lymphoma cell deficient in adenylate cyclase, Science 187: 750–752.PubMedGoogle Scholar
  25. 25.
    Bourne, H. R., Coffino, P., and Tomkins, G. M., 1975, Somatic genetic analysis of cyclic AMP action: Characterization of unresponsive mutants, J. Cell. Physiol. 85: 611–620.PubMedGoogle Scholar
  26. 26.
    Boume, H. R., Tomkins, G. M., and Dion, S., 1973, Regulation of phosphodiesterase synthesis: requirement for cyclic adenosine monophosphate-dependent protein kinase, Science 181: 952–954.Google Scholar
  27. 27.
    Boyd, Y. L., and Harris, H., 1973, Correction of genetic defects in mammalian cells by the input of small amounts of foreign genetic material, J. Cell Sci. 13: 841–861.PubMedGoogle Scholar
  28. 28.
    Brenner, M., and Ames, B. N., 1967, The histidine operon and its regulation, in “Metabolic Pathways,” Vol. 5 (H. J. Vogel, ed.), pp. 349–387, Academic Press, New York.Google Scholar
  29. 29.
    Bridges, B. A., and Huckle, J., 1970, Mutagenesis of cultured mammalian cells by X-radiation and ultraviolet light, Mutat. Res. 10: 141–151.PubMedGoogle Scholar
  30. 30.
    Bunn, C. L., Mitchell, C. H., Lukins, H. B., and Linnane, A. W., 1970, Biogenesis of mitochondria, XVIII. A new class of cytoplasmically determined antibiotic resistant mutants in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 67: 1233–1240.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. U.S.A. 71: 1681–1685.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Burch, J. W., and McBride, O. W., 1975, Human gene expression in rodent cells after uptake of isolated metaphase chromosomes, Proc. Natl. Acad. Sci. U.S.A. 72: 1797–1801.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Burkholder, G. D., and Mukherjee, B. B., 1970, Uptake of isolated metaphase chromosomes by mammalian cells in vitro, Exp. Cell Res. 61: 413–422.PubMedGoogle Scholar
  34. 34.
    Cairns, J., and deLucia, P., 1969, Isolation of an E. coli strain with a mutation affecting DNA polymerase, Nature 224: 1164–1166.PubMedGoogle Scholar
  35. 35.
    Cavalli-Sforza, L. L., and Lederberg, J., 1956, Isolation of preadaptive mutants in bacteria by sib selection, Genetics 41: 367–381.Google Scholar
  36. 36.
    Chan, T.-S., Long, C., and Green, H., 1975, A human—mouse somatic cell hybrid line selected for human deoxycytidine deaminase, Somatic Cell Genet. 1: 81–90.PubMedGoogle Scholar
  37. 37.
    Chan, V. L., Whitmore, G. F., and Siminovitch, L., 1972, Mammalian cells with altered forms of RNA polymerase II, Proc. Natl. Acad. Sci. U.S.A. 69: 3119–3123.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Chang, R. S., Liepins, H., and Margolish, M., 1961, Carbon dioxide requirement and nucleic acid metabolism of HeLa and conjunctival cells, Proc. Soc. Exp. Biol. Med. 106: 149–152.PubMedGoogle Scholar
  39. 39.
    Chasin, L. A., 1974, Mutations affecting adenine phosphoribosyl transferase activity in Chinese hamster cells, Cell 2: 37–41.PubMedGoogle Scholar
  40. 40.
    Chasin, L. A., Feldman, A., Konstam, M., and Urlaub, G., 1974, Reversion of a Chinese hamster cell auxotrophic mutant, Proc. Natl. Acad. Sci. U.S.A. 71: 718–722.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Choi, K. W., and Bloom, A. D., 1970, Clóning of human lymphocytes in vitro, Nature 227: 171–173PubMedGoogle Scholar
  42. 42.
    Choräzy, M., Bendich, A., Borenfreund, E., Ittensohn, O. L., and Hutchinson, D. J., 1963, Uptake of mammalian chromosomes by mammalian cells, J. Cell Biol. 19: 71–77.PubMedCentralGoogle Scholar
  43. 43.
    Chu, E. H. Y., 1971, Mammalian cell genetics, III. Characterization of X-ray-induced forward mutations in Chinese hamster cell cultures, Mutat. Res. 11: 23–34.PubMedGoogle Scholar
  44. 44.
    Chu, E. H. Y., 1971, Induction and analysis of gene mutations in mammalian cell cultures, in “Chemical Mutagens,” Vol. 2, (A. Hollaender, ed.), pp. 411–444, Plenum Press, New York.Google Scholar
  45. 45.
    Chu, E. H. Y., 1974, Induction and analysis of gene mutations in cultured mammalian somatic cells, Genetics 78: 115–132.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Chu, E. H. Y., Brimer, P., Jacobson, K. B., and Merriam, E. V., 1969, Mammalian cell genetics. I. Selection and characterization of mutations auxotrophic for Lglutamine or resistant to 8-azaguanine in Chinese hamster cells in vitro, Genetics 62: 359–377.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Chu, E. H. Y., Brimer, P. A., Schenley, C. K., Ho, T., and Mailing, H. V., 1974, Reversion studies of chemically-induced mutants in Chinese hamster cells, in “Molecular and Environmental Aspects of Mutagenesis” (L. Prakash, F. Sherman, M. W. Miller, C. W. Lawrence, and H. W. Taper, eds.), pp. 178–195, Charles C. Thomas, Springfield.Google Scholar
  48. 48.
    Chu, E. H. Y., and Mailing, H. V., 1968, Chemical mutagenesis in Chinese hamster cells in vitro, in “Proc. 12th Intl. Congr. Genetics,” Vol. I, p. 102, Science Council of Japan, Tokyo.Google Scholar
  49. 49.
    Chu, E. H. Y., and Mailing, H. V., 1968, Mammalian cell genetics. II. Chemical induction of specific locus mutations in Chinese hamster cells in vitro, Proc. Natl. Acad. Sci. U.S.A. 61: 1306–1312.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Chu, E. H. Y., Sun, N. C., and Chang, C. C., 1972, Induction of auxotrophic mutations by treatment of Chinese hamster cells with 5-bromodeoxyuridine and black light, Proc. Natl. Acad. Sci. U.S.A. 69: 3459–3463.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Chu, E. H. Y., Sun, N. C., and Chang, C. C., 1975, Genetic markers associated with hamster chromosomes, in “Mammalian Cells: Problems and Probes” (C. R. Richmond, D. F. Peterson, P. P. Mullaney, and E. C. Anderson, eds.), pp. 228–238, National Technical Information Service, U. S. Dept. of Commerce, Springfield.Google Scholar
  52. 52.
    Chu, M. Y., and Fischer, G. A., 1965, Comparative studies of leukemic cells sensitive and resistant to cytosine arabinoside, Biochem. Pharmacol. 14: 333–341.PubMedGoogle Scholar
  53. 53.
    Clausen, R. E., and Cameron, D. R., 1957, Inheritance in Nicotiana tabacum. XXVIII. The cytogenetics of introgression, Proc. Natl. Acad. Sci. U.S.A. 43: 908–913.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Coffino, P., Bourne, H. R., and Tomkins, G. M., 1975, Somatic genetic analysis of cyclic AMP action: Selection of unresponsive mutants, J. Cell. Physiol. 85: 603–610.PubMedGoogle Scholar
  55. 55.
    Coffino, P., Gray, J. W., and Tomkins, G. M., 1975, Cyclic AMP, a nonessential regulator of the cell cycle, Proc. Natl. Acad. Sci. U.S.A. 73: 878–882.Google Scholar
  56. 56.
    Coffino, P., Laskov, R., and Scharff, M. D., 1970, Immunoglobulin production: methods for quantitatively detecting variant myeloma cells, Science 167: 186–188.PubMedGoogle Scholar
  57. 57.
    Cox, R. P., Krauss, M. R., Balis, M. E., and Dancis, J., 1972, Communication between normal and enzyme deficient cells in tissue culture, Exp. Cell Res. 74: 251–268.PubMedGoogle Scholar
  58. 58.
    Creagan, R. P., Chen, S., and Ruddle, F. H., 1975, Genetic analysis of the cell surface, association of human chromosome 5 with sensitivity to diphtheria toxin of mouse-human somatic cell hybrids, Proc. Natl. Acad. Sci. U.S.A. 72: 2237–2241.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Creasey, W. A., 1963, Studies on the metabolism of 5’-iodo-2’-deoxycytidine in vitro, J. Biol. Chem. 238: 1772–1776.PubMedGoogle Scholar
  60. 60.
    Daniel, V., Litwack, G., and Tomkins, G., 1973, Induction of cytolysis of cultured lymphoma cells by adenosine 3’,5’ cyclic monophosphate and the isolation of resistant variants, Proc. Natl. Acad. Sci. U.S.A. 70: 76–79.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Davidson, R. L., Adelstein, S. J., and Oxman, M. N., 1973, Herpes simplex virus as a source of thymidine kinase for thymidine kinase-deficient mouse cells: Suppression and reactivation of the viral enzyme, Proc. Natl. Acad. Sci. U.S.A. 70: 1912–1916.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Davidson, R. L., and de la Cruz, F. F. (eds), 1974, “Somatic Cell Hybridization,” Raven Press, New York.Google Scholar
  63. 63.
    Davidson, R. L. and Ephrussi, B., 1965, A selective system for the isolation of hybrids between L cells and normal cells, Nature 205: 1170–1171.Google Scholar
  64. 64.
    Davis, B. D., 1948, Isolation of biochemically deficient mutations of bacteria by penicillin, J. Am. Chem. Soc. 70: 4267.PubMedGoogle Scholar
  65. 65.
    DeLuca, C., and Gioelli, R. P., 1971, Transhydrogenase activity in mammalian cells in vitro: Its possible physiological significance, In Vitro 7: 13–16.Google Scholar
  66. 66.
    DeMars, R., 1968, A temperature sensitive glucose-6-phosphate dehydrogenase in mutant cultured human cells, Proc. Natl. Acad. Sci. U.S.A. 61: 562–569.PubMedCentralPubMedGoogle Scholar
  67. 67.
    DeMars, R., 1974, Resistance of cultured human fibroblasts and other cells to purine and pyrimidine analogues in relation to mutagenesis detection, Mutat. Res. 24: 335–364.PubMedGoogle Scholar
  68. 68.
    DeMars, R., and Hooper, J. L., 1960, A method of selecting for auxotrophic mutants of HeLa cells, J. Exp. Med. 111: 559–573.Google Scholar
  69. 69.
    De Saint Vincent, B. P., and Buttin, G., 1973, Studies on 1-ß-o-arabinofuranosylcytosine resistant mutants of Chinese hamster fibroblasts, Eur. J. Biochem. 37: 481–488.Google Scholar
  70. 70.
    deSerres, F. J., 1964, Genetic analysis of the structure of the ad-3 region of Neurospora crassa by means of irreparable recessive lethal mutations, Genetics 50: 21–30.PubMedGoogle Scholar
  71. 71.
    Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E., 1976, The selection of Chinese hamster cells deficient in oxidative energy metabolism, Somatic Cell Genet.,in press.Google Scholar
  72. 72.
    Drake. J. W., 1970, “The Molecular Basis of Mutation,” Holden-Day, San Francisco.Google Scholar
  73. 73.
    Duncan, M. E., and Brookes, P., 1973, The induction of azaguanine-resistant mutants in cultured Chinese hamster cells by reactive derivatives of carcinogenic hydrocarbons, Mutat. Res. 21: 107–118.PubMedGoogle Scholar
  74. 74.
    Ebina, T., Karmo, I., Takahashi, K., Homma, M., and Ishida. N., 1970, Incorporation of isolated HeLa-S3 metaphase chromosomes into cultured mouse embryo cells, Exp. Cell Res. 62: 384–388.PubMedGoogle Scholar
  75. 75.
    Edgar, R. S., and Lielausis, I., 1964, Temperature sensitive mutants of bacteriophage T4D: Their isolation and genetic characterization, Genetics 49: 649–662.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Ege, T., Hamburg, H., Krondahl, U., Ericsson, J., and Ringertz, N. R., 1974, Characterization of mini-cells (nuclei) obtained by cytochalasin enucleation, Exp. Cell Res. 87: 365–376.PubMedGoogle Scholar
  77. 77.
    Ege, T., and Ringertz, N. R., 1974, Preparation of micro-cells by enucleation of micronucleate cells, Exp. Cell Res. 87: 378–382.PubMedGoogle Scholar
  78. 78.
    Eisenstark, A., 1971, Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells, Adv. Genet. 16: 167–198.PubMedGoogle Scholar
  79. 79.
    Elsevier, S. M., Kucherlapati, R. S., Nichols, E. A., Willecke, K., Creagan, R. P., Giles, R. E., McDougall, J. K., and Ruddle, F. H., 1975, Assignment and regional localization of a gene coding for galactokinase to human chromosome 17g21–22, Cytogenet. Cell Genet. 14: 117–119.Google Scholar
  80. 80.
    Engelsberg, E., and Bass, R., 1974, Inhibition of the growth of L cells by the natural amino acids and isolation and characterization of resistant mutants, In Vitro 10: 385.Google Scholar
  81. 81.
    Enbelsberg, E., and Ingraham, L., 1957, Meiotrophic mutants of Pasteurella pestis and their use in elucidation of nutritional requirements, Proc. Natl. Acad. Sci. U.S.A. 43: 369–373.Google Scholar
  82. 82.
    Ephrussi, B., 1972, “Hybridization of Somatic Cells,” Princeton University Press, Princeton.Google Scholar
  83. 83.
    Ephrussi, B., and Sorieul, S., 1962, Nouvelles observations sur l’hybridization “in vitro” de cellules de souris, C. R. Acad. Sci. 254: 181–182.Google Scholar
  84. 84.
    Ephrussi, B., and Weiss, M. C., 1965, Interspecific hybridization of somatic cells, Proc. Natl. Acad. Sci. U.S.A. 53: 1040–1042.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G. H., and Lielausis, I., 1963. Physiological studies of conditional lethal mutants of bacteriophage T4D, Cold Spring Harbor Symp. Quant. Biol. 28: 375–394.Google Scholar
  86. 86.
    Farber, F., Melnick, J., and Butel, J., 1975, Optimal conditions for uptake of exogenous DNA by Chinese hamster cells deficient in hypoxanthine-guanine phosphoribosyltransferase, Biochim. Biophys. Acta 390: 298–311.PubMedGoogle Scholar
  87. 87.
    Fenwick, R. G., Jr., and Caskey, C. T., 1975, Mutant Chinese hamster cells with a thermosensitive hypoxanthine-guanine phosphoribosyltransferase, Cell 5: 115–122.PubMedGoogle Scholar
  88. 88.
    Firkin, F. C., and Linnane, A. W., 1968, Differential effects of chloramphenicol on the growth and respiration of mammalian cells, Biochem. Biophys. Res. Commun. 32: 398–402.PubMedGoogle Scholar
  89. 89.
    Fischer, G. A., Lee, S. Y., and Calabresi, P., 1974, Detection of chemical mutagens using a host-mediated assay (L5178Y) mutagenesis system, Mutat. Res. 26: 501–511.PubMedGoogle Scholar
  90. 90.
    Fisher, H. W., and Puck, T. T., 1956, On the functions of X-irradiated “feeder” cells in supporting growth of single mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 42: 900–906.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Fox, A., and Yoon, S. B., 1970, DNA-induced transformation in Drosophila: Locus specificity and the establishment of transformed stocks, Proc. Natl. Acad. Sci. U.S.A. 67: 1608–1615.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Fox, M., 1975, Factors affecting the quantitation of dose-response curves for mutation induction in V-79 Chinese hamster cells after exposure to chemical and physical mutagens, Mutat. Res. 29: 449–466.PubMedGoogle Scholar
  93. 93.
    Fox, M., Fox, B. W., and Ayad, S. R., 1969, Evidence for genetic expression of integrated DNA in lymphoma cells, Nature 222: 1086–1087.PubMedGoogle Scholar
  94. 94.
    Fraenkel, D. G., and Levisohn, S. R., 1967, Glucose and gluconate metabolism in Escherichia coli: A study of a mutant lacking phosphoglucose isomerase, J. Bacteriol. 93: 1571–1578.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Fraenkel, D. G., Osborn, M. J., Horecker, B. L., and Smith, S. M., 1963, Metabolism and cell wall structure of a mutant of Salmonella typhimurium deficient in phosphoglucose isomerase, Biochem. Biophys. Res. Commun. 11: 423–428.PubMedGoogle Scholar
  96. 96.
    Fraenkel, D. G., and Vinopal, R. T., 1973, Carbohydrate metabolism in bacteria, Annu. Rev. Microbiol. 27: 69–100.Google Scholar
  97. 97.
    Franks, D., 1968, Antigens as markers on cultured mammalian cells, Biol. Rev. 43: 17–50.PubMedGoogle Scholar
  98. 98.
    Fratatoni, J. C., Hall, C. W., and Neufeld, E. F., 1968, Hurler and Hunter syndromes: Mutual correction of the defect in cultured fibroblasts, Science 162: 570–572.Google Scholar
  99. 99.
    Freese, E., 1963, Molecular mechanism of mutation, in “Molecular Genetics,” Part I (J. H. Taylor, ed.), pp. 207–269, Academic Press, New York.Google Scholar
  100. 100.
    Fries, N., 1947, Experiments with different methods of isolating physiological mutations of filamentous fingi, Nature 159: 199.PubMedGoogle Scholar
  101. 101.
    Fulder, S. J., and Holliday, R., 1975, A rapid rise in cell variants during the sensence of populations of human fibroblasts, Cell 6: 67–73.PubMedGoogle Scholar
  102. 102.
    Gale, G. R., Ostrander, W. E., and Atkins, L. M., 1968, Effects of alanosine on purine and pyrimidine synthesis, Biochem. Pharmacol. 17: 1823–1832.PubMedGoogle Scholar
  103. 103.
    Gale, G. R., and Schmidt, G. B., 1968, Mode of action of alanosine, Biochem. Pharmacol. 17: 363–368.PubMedGoogle Scholar
  104. 104.
    Gatlin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte chemotaxis: Evidence for an association between calcium exchanges and microtubule assembly, J. Cell Biol. 62: 594–609.Google Scholar
  105. 105.
    Gartler, S. M., Gandini, E. G., and Ceppellini, R., 1962, Glucose-6-phosphate dehydrogenase deficient mutant in human cell culture, Nature 193: 602–603.PubMedGoogle Scholar
  106. 106.
    Gartler, S. M., and Pious, D. A., 1964, Genetics of mammalian cell cultures, Humangenetik 2: 83–114Google Scholar
  107. 107.
    Geyer, R. P., and Neimark, J. M., 1958, Response of COL-deficient human cells in vitro to normal cell extracts, Proc. Soc. Exp. Biol. Med. 99: 599–601.PubMedGoogle Scholar
  108. 108.
    Gilbert, S. F., and Migeon, B. R., 1975, D-Valine as a selective agent for normal human and rodent epithelial cells in culture, Cell 5: 11–17.PubMedGoogle Scholar
  109. 109.
    Giles, R. E., and Ruddle, F. H., 1973, Production and characterization of proliferating somatic cell hybrids, in “Tissue Culture Methods and Applications” (P. F. Kruse, Jr. and M. K. Patterson, Jr., eds.), pp. 475–500, Academic Press, New York.Google Scholar
  110. 110.
    Gilula, N. B., Reeves, O. R., and Steinbach, A., 1972, Metabolic coupling, ionic coupling, and cell contacts, Nature 235: 262–265.PubMedGoogle Scholar
  111. 111.
    Ginsberg, E., Salomon, D., Sreevalsan, T., and Freese, E., 1973, Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 70: 2457–2461.Google Scholar
  112. 112.
    Glick, J. L., aid Salim, A. P., 1967, DNA-induced pigment production in a hamster cell line, J. Cell Biol. 33: 209–212.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Goldsby, R. A., and Zipser, E., 1969, The isolation and replica plating of mammalian cell clones, Exp. Cell Res. 54: 271–275.PubMedGoogle Scholar
  114. 114.
    Goldstein, S., and Lin, C. C., 1972, Survival and DNA repair of somatic cell hybrids after ultraviolet irradiation, Nature (London) New Biol. 239: 142–145.Google Scholar
  115. 115.
    Gorini, L., 1970, Informational suppression, Annu. Rev. Genet. 4: 107–134.PubMedGoogle Scholar
  116. 116.
    Green, C. D., and Martin, D. W.. Jr., 1973, Characterization of a feedback resistant phsophoribosylpyrophosphate synthetase from cultured, mutagenized hepatoma cells that overproduce purines, Proc. Natl. Acad. Sci. U.S.A. 70: 3698–3702.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Green, H., and Kehinde, O., 1974, Sublines of mouse 3T3 cells that accumulate lipid, Cell 1: 113–1 16.Google Scholar
  118. 118.
    Greer, H., and Fink, G. R., 1975, Isolation of regulatory mutants in Sacchromyces cerevisiae, in “Methods in Cell Biology,” Vol. 11 (D, M. Prescott, ed.), pp. 247272, Academic Press, New York.Google Scholar
  119. 119.
    Grzeschik, K.-H., 1973, Utilization of somatic cell hybrids for genetic studies in man, Humangenetik 19: 1–40.PubMedGoogle Scholar
  120. 120.
    Hakala, M. T., 1957, Prevention of toxicity of amethopterin for sarcoma-180 cells in tissue culture, Science 126: 255.PubMedGoogle Scholar
  121. 121.
    Ham, R. C., and Puck, T. T., 1962, Quantitative clonal growth of isolated mammalian cells, in “Methods in Enzymology.” Vol. 5 (S. P. Colowick and N. O. Kaplan, eds.), pp. 90–119, Academic Press, New York.Google Scholar
  122. 122.
    Handmaker, S. D., 1973, Hybridization of eukaryotic cells, Annu. Rev. Microbiol. 27: 189–204.PubMedGoogle Scholar
  123. 123.
    Harris, H., 1974, “Nucleus and Cytoplasm.” Third Edition, Oxford University Press, London.Google Scholar
  124. 124.
    Harris, M., 1960, Specificity and cross-reactions in a strain of pig kidney cells resistant to 2,6-diaminopurine, Exp. Cell Res. 21: 439–442.PubMedGoogle Scholar
  125. 125.
    Harris, M., 1964, “Cell Culture and Somatic Variation,” Holt, Rinehart, and Winston, New York.Google Scholar
  126. 126.
    Harris, M., 1971, Mutation rates in cells at different ploidy levels. J. Cell. Physiol. 78: 177–184.PubMedGoogle Scholar
  127. 127.
    Harris, M., 1973, Phenotypic expression of drug resistance in hybrid cells, J. Nat. Cancer Inst. 50: 423–429.PubMedGoogle Scholar
  128. 128.
    Hasmi, S., May, S. R., Krooth, R. S., and Miller, O. J., 1975, Concurrent development of resistance to 6-azauridine and adenosine in a mouse cell line, J. Cell. • Physiol. 86: 191–200.Google Scholar
  129. 129.
    Hatzfeld, J., and Buttin, G., 1975, Temperature-sensitive cell cycle mutants of Chinese hamster cell line with a reversible block in cytokinesis, Cell 5: 123–129.PubMedGoogle Scholar
  130. 130.
    Henneberry, R. C., Fishman, P. H., and Freese, E., 1975, Morphological changes in cultured mammalian cells: Prevention by the calcium inophore A23187. Cell 5: 1–9.PubMedGoogle Scholar
  131. 131.
    Hochman, J., Insel, P. A., Boume, H. R., Coffino, P., and Tomkins, G. M., 1975, A structural gene mutation affecting the regulatory subunit of cyclic AMP-dependent protein kinase in mouse lymphoma cells. Proc. Natl. Acad. Sci. U.S.A. 72: 5051–5055.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Hohmann, L. K., and Barnhart, B. J., 1975, A modified replicate plating technique for use in somatic cell mutant selection, J. Cell. Biol. 67: 176a.Google Scholar
  133. 133.
    Horst, J., Kluge, F., Beyreuther, K., and Gerok, W., 1975, Gene transfer to human cells: Transducing phage Xp lac gene expression in GM,-gangliosidosis fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 72: 3531–3535.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Hsie, A. W., Brimer, P. A., Mitchell, T. J., and Gosslee, D. G., 1975, The dose—response relationship for ethyl methanesulfonate-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster ovary cells, Somatic Cell Genet. 1: 247–261.PubMedGoogle Scholar
  135. 135.
    Hsie, A. W., Brimer, P. A., Mitchell, T. J., and Gosslee, D. G., 1975, The dose—response relationship for ultraviolet-light-induced mutations at the hypoxanthineguanine phosphoribosyltransferase locus in Chinese hamster cells, Somatic Cell Genet. 1: 383–389.PubMedGoogle Scholar
  136. 136.
    Hsie, A. W., Jones, C., and Puck, T. T., 1971, Further changes in differentiation state accompanying the conversion of Chinese hamster cells to fibroblast form by dibutyrl adenosine cyclic 3’:5’-monophosphate and hormones, Proc. Natl. Acad. Sci. U.S.A. 68: 1648–1652.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Hsie, A. W., and Puck, T. T., 1971, Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3’:5’-monophosphate and testosterone, Proc. Natl. Acad. Sci. U.S.A. 68: 358–361.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Huberman, E., Donovan, P. J., and DiPaolo, J. A., 1972, Mutation and transformation of cultured mammalian cells by N-acetoxy-N-2-fluorenylacetamide, J. Nat. Cancer Inst. 48: 837–840.PubMedGoogle Scholar
  139. 139.
    Huberman, E., and Heidelberger, C., 1972, The mutagenicity to mammalian cells of pyrimidine nucleoside analogs, Mutat. Res. 14: 130–132.PubMedGoogle Scholar
  140. 140.
    Ishii, K., and Green, H., 1973, Lethality of adenosine for cultured mammalian cells by interference with pyrimidine biosynthesis, J. Cell Sci. 13: 429–439.PubMedGoogle Scholar
  141. 141.
    Ittensohn, O. L., and Hutchinson, D. J., 1969, Cytologic manifestations of phagocytosis of L1210 chromosomes by LI210 cells in culture, Exp. Cell Res. 55: 149–154.PubMedGoogle Scholar
  142. 142.
    Jiménez de Astia, L., Surian, E. S., Flawia, M. M., and Torres, H. N., 1973, Effect of insulin on the growth pattern and adenylate cyclase activity of BHK fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 70: 1388–1392.Google Scholar
  143. 143.
    Johnson, G. S., D’Armiento, M., and Carchman, R. A., 1974, N6-substituted adenines induce cell elongation irrespective of the intra-cellular cyclic AMP levels, Exp. Cell Res. 85: 47–56.PubMedGoogle Scholar
  144. 144.
    Johnson, G. S., Friedman, R. M., and Pastan, I., 1971, Restoration of several morphological characteristics of normal fibroblasts in sacoma cells treated with adenosine 3’:5’-cyclic monophosphate and its derivatives. Proc. Natl. Acad. Sci. U.S.A. 68: 425–429.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Johnson, G. S., and Pastan, I., 1972, Cyclic AMP increases the adhesion of fibroblasts to substratum, Nature (London) New Biol. 236: 247–249.Google Scholar
  146. 146.
    Johnson, R. T., and Rao, P. N., 1970, Mammalian cell fusion: Induction of premature chromosome condensation in interphase nuclei, Nature 226: 717–722.PubMedGoogle Scholar
  147. 147.
    Jones, C., Wuthier, P., and Puck, T. T., 1975. Genetics of somatic cell surface antigens. III. Further analysis of the A,, marker, Somatic Cell Genet. 1: 235–246.PubMedGoogle Scholar
  148. 148.
    Kao, F.-T., Johnson, R. T., and Puck, T. T., 1969, Complementation analysis on virus-fused Chinese hamster cells with nutritional markers, Science 164: 312–314.PubMedGoogle Scholar
  149. 149.
    Kao. F.-T., Jones, C., and Puck, T. T., 1976, Genetics of somatic mammalian cells: Genetic, immunologic, and biochemical analysis with Chinese hamster cell hybrids containing selected human chromosomes, Proc. Natl. Acad. Sci. U.S.A. 73: 193–197.Google Scholar
  150. 150.
    Kao, F.-T., and Puck, T. T., 1968, Isolation of nutritionally deficient mutants of Chinese hamster cells, in “Proc. 12th Intl. Congr. Genetics.” Vol. 1, p. 157, Science Council of Japan, Tokyo.Google Scholar
  151. 151.
    Kao, F.-T., and Puck, T. T., 1968, Genetics of somatic mammalian cells. VII. Induction and isolation of nutritional mutants in Chinese hamster cells, Proc. Natl. Acad. Sci. U.S.A. 60: 1275–1281PubMedCentralPubMedGoogle Scholar
  152. 152.
    Kao, F.-T., and Puck, T. T., 1970, Genetics of somatic mammalian cells: Linkage studies with human—Chinese hamster cell hybrids, Nature 228: 329–332.PubMedGoogle Scholar
  153. 153.
    Kao, F.-T., and Puck, T. T., 1974, Induction and isolation of auxotrophic mutants in mammalian cells, in “Methods in Cell Biology,” Vol. 8 (D. M. Prescott, ed.), pp. 23–39, Academic Press, New York.Google Scholar
  154. 154.
    Kato, H., Sekiya, K., and Yosida, T. H., 1971, Uptake of isolated chromosomes by mammalian cells and protective effect of protamine sulfate, Exp. Cell Res. 65: 454–462.PubMedGoogle Scholar
  155. 155.
    Kaufman, E. R., and Davidson, R. L., 1975, Control of the expression of a herpes simplex virus thymidine kinase gene incorporated into thymidine kinase-deficient mouse cells, Somatic Cell Genet. 1: 153–164.PubMedGoogle Scholar
  156. 156.
    Kay, E. R. M, 1961, Incorporation of deoxyribonucleic acid by mammalian cells in vitro, Nature (London) 191: 387–388.Google Scholar
  157. 157.
    Kelly-Garvert, F., and Legator, M. S., 1973, Cytogenetic and mutagenic effects of DDT and DDE in a Chinese hamster cell line, Mutat. Res. 17: 223–229.PubMedGoogle Scholar
  158. 158.
    Kislev, N., Spolsky, C. M., and Eisenstadt, J. M.. 1973, Effect of chloramphenicol on the ultra-structure of mitochondria in sensitive and resistant strains of HeLa, J. Cell Biol. 57: 571–579.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Kit, S., and Dubbs, D. R., 1963, Acquisition of thymidine kinase activity by herpes simplex infected mouse fibroblast cells, Biocl,em. Biophys. Res. Commun. 11: 55–59.Google Scholar
  160. 160.
    Klein, G., 1963, Genetics of somatic cells, in “Methodology in Mammalian Genetics” (W. J. Burdette, ed.), pp. 407–468, Holden-Day, San Francisco.Google Scholar
  161. 161.
    Klinger, H. P., and Shin, S. I., 1974, Modulation of the activity of an avian gene transferred into a mammalian cell by cell fusion, Proc. Natl. Acad. Sci. U.S.A. 71: 1398–1402.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Knapp, A. G. A. C., and Simons, J. W. I. M., 1975, A mutational assay system for L5178Y mouse lymphoma cells, using hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficency as marker. The occurrence of a long expression time for mutations induced by X-rays and EMS, Mutat. Res. 30: 97–110.Google Scholar
  163. 163.
    Kozak, C, Nichols, E. A., and Ruddle, F. H., 1974, A somatic cell approach to the genetic analysis of the laboratory mouse, J. Exp. Zool. 187: 303–308.PubMedGoogle Scholar
  164. 164.
    Kozak, C., Nichols, E., and Ruddle, F. H., 1975, Gene linkage analysis in the mouse by somatic cell hybridization: Assignment of adenine phosphoribosyltransferase to chromosome 8 and a-galactosidase to the X chromosome, Somatic Cell Genet. 1: 371–382.PubMedGoogle Scholar
  165. 165.
    Kraus, L. M., 1961, Formation of different hemoglobins in tissue culture of human bone marrow treated with human deoxyribonucleic acid, Nature (London) 192: 1055 1957.Google Scholar
  166. 166.
    Krevitsky, T. A., Papaioannou, R., and Elion, G. B., 1969, Human hypoxanthine phosphoribosyltransferase, J. Biol. Chem. 224: 1263–1270.Google Scholar
  167. 167.
    Krooth, R. S., Darlington, G. A., and Velazquez, A. A., 1968, The genetics of cultured mammalian cells, Annu. Rev. Genet. 2: 141–164.Google Scholar
  168. 168.
    Kruse, P. F., Jr., and Patterson, M. K., Jr. (eds.), 1973, “Tissue Culture. Methods and Applications,” Academic Press, New York.Google Scholar
  169. 169.
    Kucherlapati, R. S., Baker, R. M., and Ruddle, F. H., 1975, Ouabain as a selective agent in the isolation of somatic cell hybrids, Cytogenet. Cell Genet. 14: 192–193.Google Scholar
  170. 170.
    Kucherlapati, R. S., Creagan, R. P., and Ruddle, F. H., 1974, Progress in human gene mapping by somatic cell hybridization, in “The Cell Nucleus,” Vol. 11 (H. Busch, ed.), pp. 209–222, Academic Press, New York.Google Scholar
  171. 171.
    Kuo, J. F., and Greengard, P., 1969, Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3’,5’-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom, Proc. Natl. Acad. Sci. U.S.A. 64: 1349–1355.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Kuroki, T., 1973. Colony formation of mammalian cells on agar plates and its aPplication to Lederberg’s replica plating, Exp. Cell Res. 80: 55–62.PubMedGoogle Scholar
  173. 173.
    Kuroki, T., 1974, Isolation of UV-sensitive clones from mouse cell lines by agar plate culture and replica plating and their possible application in the study of chemical carcinogenesis, in “Chemical Carcinogenesis Assays” (R. Montesano and L. Tomatis, eds.), pp. 147–169, IARC Scientific Publications No. 10, Intl. Agency for Research on Cancer, Lyon.Google Scholar
  174. 174.
    Kuroki, T., 1975, Agar plate culture and Lederberg style replica plating of mammalian cells, in “Methods in Cell Biology,” Vol. 9 (D. M. Prescott, ed.), pp. 157–178, Academic Press, New York.Google Scholar
  175. 175.
    Kusano, T., Long, C., and Green, H., 1971, A new reduced human-mouse somatic cell hybrid containing the human gene for adenine phosphoribosyltransferase, Proc. Natl. Acad. Sci. U.S.A. 68: 82–86.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Langan, T. A., 1973, Protein kinases and protein kinase substrates. in “Advances in Cyclic Nucleotide Research,” Vol. 3 (P. Greengard and G. A. Robinson, eds.), pp. 99–153, Raven Press, New York.Google Scholar
  177. 177.
    Lederberg, J., and Lederberg, E. M., 1952, Replica plating and indirect selection of bacterial mutants, J. Bacteriol. 63: 399–406.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Lederberg, J., and Zinder, N., 1948, Concentration of biochemical mutants of bacteria with penicillin, J. Am. Chem. Soc. 70: 4267–4268.PubMedGoogle Scholar
  179. 179.
    Lieberman, I., and Ove, P., 1960, Enzyme studies with mutant mammalian cells, J. Biol. Chem. 235: 1765–1768.PubMedGoogle Scholar
  180. 180.
    Linnane, A. W., Haslam, J. M., Lukins, H. B., and Nagley. P., 1972, The biogenesis of mitochondria in microorganisms, Anna. Rev. Microbial. 26: 163–198.Google Scholar
  181. 181.
    Linnane, A. W., Saunders, G. W., Gingold, E. B., and Lukins, H. B., 1968, The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 59: 903–910.Google Scholar
  182. 182.
    Liskay, R. M., 1973, A study of cell cycle variants in an established mouse line, J. Cell Biol. 59: 197a.Google Scholar
  183. 183.
    Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145: 709–710.PubMedGoogle Scholar
  184. 184.
    Lubin, M, 1959, Selection of auxotrophic bacterial mutants by tritium-labeled thymidine, Science 129: 838–839.PubMedGoogle Scholar
  185. 185.
    Lubin, M. J., 1962, Enrichment of auxotrophic mutant populations by recycling, J. Bacteriol. 83: 696–697.PubMedCentralPubMedGoogle Scholar
  186. 186.
    Lwoff, A., Dulbecco, R., Vogt, M., and Lwoff, M., 1955, Kinetics of the release of poliomyelitis virus from single cells, Virology 1: 128–139.PubMedGoogle Scholar
  187. 187.
    Macpherson, I., and Bryden, A., 1971, Mitomycin C treated cells as feeders, Exp. Cell Res. 69: 240–241.PubMedGoogle Scholar
  188. 188.
    McBride, O. W., and Ozer, H. L., 1973, Transfer of genetic information by purified metaphase chromosomes, Proc. Natl. Acad. Sci. U.S.A. 70: 1258–1262.PubMedCentralPubMedGoogle Scholar
  189. 189.
    McDougall, J. K., Kucherlapati, R., and Ruddle, F. H., 1973, Localization and induction of the hyman thymidine kinase gene by adenovirus 12, Nature (London) New Biol. 245: 172–175.Google Scholar
  190. 190.
    McKusick, V. A., and Chase, G. A., 1973, Human genetics. Anno. Rev. Genet. 7: 435–473.Google Scholar
  191. 191.
    Marin, G., 1969, Selection of chromosomal segregants in a “hybrid” line of Syrian hamster fibroblasts, Exp. Cell Res. 57: 29–36.PubMedGoogle Scholar
  192. 192.
    Martin, G. M., and Tuan, A., 1966, A definitive cloning technique for human fibroblast cultures, Proc. Soc. Exp. Biol. Med. 123: 138–140.PubMedGoogle Scholar
  193. 193.
    Mathias, A., and Fischer, G. A., 1962, The metabolism of thymidine by murine leukemic lymphoblasts (L5178Y), Biochem. Pharmacol. 11: 57–68.PubMedGoogle Scholar
  194. 194.
    Medrano, L., and Green, H., 1974, A uridine kinase-deficient mutant of 3T3 and a selective method for cells containing the enzyme, Cell 1: 23–26.Google Scholar
  195. 195.
    Meiss, H. K., and Basilico, C., 1972, Temperature sensitive mutants of BHK 21 cells, Nature (London) New Biol. 239: 66–68.Google Scholar
  196. 196.
    Merril, C. R., Geier, M. R., and Petricciani, J. C., 1971, Bacterial virus gene expression in human cells, Nature (London) 233: 398–400.Google Scholar
  197. 197.
    Meuth, M., and Green, H., 1974, Alterations leading to increased ribonucleotide reductase in cells selected for resistance to deoxynucleosides, Cell 3: 367–374.PubMedGoogle Scholar
  198. 198.
    Mezger-Freed, L., 1972, Effect of ploidy and mutagen on bromodeoxyuridine resistance in haploid and diploid frog cells, Nature (London) New Biol. 235: 245–246.Google Scholar
  199. 199.
    Migeon, B. R., and Childs, B., 1970, Hybridization of mammalian somatic cells, Prog. Med. Genet. 7: 1–28.PubMedGoogle Scholar
  200. 200.
    Minna, J. D., and Coon, H. G., 1974, Human x mouse hybrid cells segregating mouse chromosomes and isozymes, Nature (London) 252: 401–404.Google Scholar
  201. 201.
    Minna, J. D., Marshall, T. H., and Shaffer-Berman, P. V.. 1975, Chinese hamster x mouse hybrid cells segregating mouse chromosomes and isozymes, Somatic Cell Genet. 1: 355–369.PubMedGoogle Scholar
  202. 202.
    Mitchell, C. H., England, J. M., and Attardi, G.. 1975, Isolation of chloramphenicolresistant variants from a human cell line, Somatic Cell Genet. 1: 215–234.PubMedGoogle Scholar
  203. 203.
    Morris, N. R., and Fischer, G. A., 1963, Studies concerning the inhibition of cellular reproduction by deoxyribonucleosides. I. Inhibition of the synthesis of deoxycytidine by a phosphorylated derivative of thymidine. Biochim. Biophvs. Acta 68: 84–92.Google Scholar
  204. 204.
    Morris, N. R., Reichard, P., and Fischer, G. A., 1963, Studies concerning the inhibition of cellular reproduction by deoxyribonucleosides. II. Inhibition of the synthesis of deoxycytidine by thymidine, deoxyadenosine and deoxyguanosine, Biochim. Biophys. Acta 68: 93–99.Google Scholar
  205. 205.
    Morrissey, A. T. E., and Fraenkel, D. G., 1968, Selection of fructose-6-phosphate kinase mutants in Escherichia coli, Biochem. Biophys. Res. Commun. 32: 467–473.Google Scholar
  206. 206.
    Mortimer, R. K., and Manney, T. R., 1971, Mutation induction in yeast, in “Chemical Mutagens,” Vol. 1 (A. Hollaender, ed.), pp. 289–310, Plenum Press, New York.Google Scholar
  207. 207.
    Munyon, W., Kraiselburd, E., Davis, D., and Mann, J., 1971, Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus, J. Virol. 7: 813–820.PubMedCentralPubMedGoogle Scholar
  208. 208.
    Myhr, B. C., and DiPaolo, J. A., 1975, Requirement for cell dispersion prior to selection of induced azaguanine-resistant colonies of Chinese hamster cells, Genetics 80: 157–169.PubMedCentralPubMedGoogle Scholar
  209. 209.
    Nabholz, M., Miggiano, V., and Bodmer, W., 1969, Genetic analysis with human-mouse somatic cell hybrids, Nature (London) 223: 358–363.Google Scholar
  210. 210.
    Naha, P. M., 1969, Temperature sensitive conditional mutants of monkey kidney cells, Nature (London) 223: 1380–1381.Google Scholar
  211. 211.
    Naha, P. M., 1974, Isolation of temperature-sensitive mutants of mammalian cells, in “Methods in Cell Biology,” Vol. 8 (D. M. Prescott, ed.), pp. 41–46, Academic Press, New York.Google Scholar
  212. 212.
    Ohno, S., 1969, Evolution of sex chromosomes in mammals, Annz. Rev. Genet. 3: 495–524.Google Scholar
  213. 213.
    Pastan, I., and Perlam, R., 1970, Cyclic adenosine monophosphate in bacteria, Science 169: 339–344.PubMedGoogle Scholar
  214. 214.
    Patterson, D., Kao, F.-T., and Puck, T. T., 1974, Genetics of somatic mammalian cells: Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism, Proc. Natl. Acad. Sci. U.S.A. 71: 2057–2061.PubMedCentralPubMedGoogle Scholar
  215. 215.
    Perlman, R., and Pastan, I., 1969, Pleiotropic deficiency of carbohydrate utilization in an adenylcyclase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 37: 151–157.Google Scholar
  216. 216.
    Petricciani, J. C., and Patterson, R. M., 1974, Incorporation of exogeneous DNA into mammalian chromosomes, Nature (London) 249: 640–650.Google Scholar
  217. 217.
    Phillips, S. G., and Phillips, D. M., 1969, Sites of nucleolus production in cultured Chinese hamster cells, J. Cell Biol. 40: 248–268.PubMedCentralPubMedGoogle Scholar
  218. 218.
    Pious, D., Hawley, P., and Forrest, G., 1973, Isolation and characterization of HL-A variants in cultured human lymphoid cells, Proc. Natl. Acad. Sci. U.S.A. 70: 1397–1400.PubMedCentralPubMedGoogle Scholar
  219. 219.
    Pontecorvo, G., 1971, Induction of directional chromosomal elimination in somatic cell hybrids, Nature (London) 230: 367–369.Google Scholar
  220. 220.
    Pontecorvo, G., 1974, Induced chromosome elimination in hybrid cells, in “Somatic Cell Hybridization” (R. L. Davidson and F. de la Cruz, eds.), pp. 65–69, Raven Press, New York.Google Scholar
  221. 221.
    Prescott, D. M., Myerson, D., and Wallace, J.,’ 1972. Enucleation of mammalian cells with cytochalasin B, Exp. Cell Res. 71: 480–485.PubMedGoogle Scholar
  222. 222.
    Preud’Homme, J.-L, Birshtein, B. K., and Scharff, M. D., 1975, Variants of a mouse myeloma cell line that synthesize immunoglobulin heavy chains having an altered serotype, Proc. Natl. Acad. Sci. U.S.A. 72: 1427–1430.PubMedCentralPubMedGoogle Scholar
  223. 223.
    Puck, T. T., and Kao, F.-T, 1967, Genetics of somatic mammalian cells. V. Treatment with 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants, Proc. Natl. Acad. Sci. U.S.A. 58: 1227–1234.Google Scholar
  224. 224.
    Puck, T. T., and Marcus, P. I., 1955, A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: The use of X-irradiated cells to supply conditioning factors, Proc. Natl. Acad. Sci. U.S.A. 41: 432–437.PubMedCentralPubMedGoogle Scholar
  225. 225.
    Puck, T. T., Wuthier, P., Jones, C., and Kao, F.-T., 1971, Genetics of somatic mammalian cells: Lethal antigens as genetic markers for study of human linkage groups. Proc. Natl. Acad. Sci. U.S.A. 68: 3102–3106.PubMedCentralPubMedGoogle Scholar
  226. 226.
    Qasba, P. K., and Aposhian, H. V., 1971, DNA and gene therapy: Transfer of mouse DNA to human and mouse embryonic cells by polyoma pseudovirions, Proc. Natl. Acad. Sci. U.S.A. 68: 2345–2349.PubMedCentralPubMedGoogle Scholar
  227. 227.
    Rao, P. N., and Johnson, R. T., 1972, Premature chromosome condensation: A mechanism for the elimination of chromosomes in virus-fused cells, J. Cell Sci. 10: 495–513.PubMedGoogle Scholar
  228. 228.
    Ricciuti, F. C., and Ruddle, F. H., 1973, Assignment of three gene loci (PGK, HGPRT, G6PD) to the long are of the human X chromosome by somatic cell genetics, Genetics 74: 661–678.PubMedCentralPubMedGoogle Scholar
  229. 229.
    Robb, J. A., 1970, Microcloning and replica plating of mammalian cells, Science 170: 857–858.PubMedGoogle Scholar
  230. 230.
    Roberts, C. F., 1959, A replica plating technique for the isolation of nutritionally exacting mutants of a filamentous fungus (Aspergillus nidulans), J. Gen. Microbiol. 20: 540–548.PubMedGoogle Scholar
  231. 231.
    Robins, A. B., and Taylor, D. M., 1968, Nuclear uptake of exogeneous DNA into mammalian cells in culture, Nature 217: 1228–1231.PubMedGoogle Scholar
  232. 232.
    Roosa, R. A., and Bailey, E., 1970, DNA mediated transformation of mammalian cells in culture. Increased transforming efficiency following sonication, J. Cell. Physiol. 75: 137–150.PubMedGoogle Scholar
  233. 233.
    Roscoe, D. H., Read, M., and Robinson, H., 1973, Isolation of temperature sensitive mammalian cells by selective detachment, J. Cell. Physiol. 82: 325–332.PubMedGoogle Scholar
  234. 234.
    Rosenstraus, M., and Chasin, L. A., 1975, Isolation of mammalian cell mutants deficient in glucose-6-phosphate dehydrogenase activity: Linkage to hypoxanthine phosphoribosyl transferase, Proc. Natl. Acad. Sci. U.S.A. 72: 493–497.PubMedCentralPubMedGoogle Scholar
  235. 235.
    Roth, J. R., 1974, Frameshift mutations, Anna. Rev. Genet. 8: 319–346.Google Scholar
  236. 236.
    Ruddle, F. H., and Creagan, R. P., 1975, Parasexual approaches to the genetics of man, Annu. Rev. Genet. 9: 407–486.PubMedGoogle Scholar
  237. 237.
    Sanford, K. K., Earle, W. R., and Likely, G. D., 1948, The growth in vitro of single isolated tissue cells, J. Nat. Cancer Inst. 9: 229–246.PubMedGoogle Scholar
  238. 238.
    Scaletta, L. J., and Ephrussi, B., 1965, Hybridization of normal and neoplastic cells in vitro, Nature (London) 205: 1169.Google Scholar
  239. 239.
    Scharff, M. D., Birshstein, B., Dharmgrongartama, B., Frank, L., Kelly, T., Kuehl, W. M., Margulies, D., Morrison, S. L., Preud’Homme, J.-L., and Weitzman, S., 1975, The use of mutant myeloma cells to explore the production of immunoglobulins, in “Molecular Approaches to Immunology” (E. E. Smith and D. W. Ribbons, eds.), pp. 109–129, Academic Press, New York.Google Scholar
  240. 240.
    Scheffler, I. E., 1974, Conditional lethal mutants of Chinese hamster cells: mutants requiring exogeneous carbon dioxide for growth, J. Cell. Physiol. 83: 219–230.PubMedGoogle Scholar
  241. 241.
    Schenck, D. M., and Moskowitz, M., 1958, Method for isolating single cells and preparation of clones from human bone marrow cultures, Proc. Soc. Exp. Biol. Med. 99: 30–33.PubMedGoogle Scholar
  242. 242.
    Schwartz, A. G., Cook, P. R., and Harris, H., 1971, Correction of a genetic defect in a mammalian cell, Nature (London) New Biol. 230: 5–8.Google Scholar
  243. 243.
    Secher, D. S., Cotton, R. G., and Milstein, C., 1973, Spontaneous mutation in tissue culture-chemical nature of variant immunoglobulin from mutant clones of MOPC 21, FEBS Lett. 37: 311–316.PubMedGoogle Scholar
  244. 244.
    Sekiguchi, T., Sekiguchi, F., Satake, S., and Yosida, T. H., 1969, Nondegraded incorporation of highly polymerized DNA and isolated metaphase chromosomes into cultured mammalian cells, and replication of the incorporated heterologous chromosomes in the cultured cells, Jpn. J. Med. Sci. Biol. 22: 72–73.PubMedGoogle Scholar
  245. 245.
    Sekiguchi, T., Sekiguchi, F., and Yamada, M. A., 1973, Incorporation and replication of foreign metaphase chromosomes in cultured mammalian cells. Exp. Cell Res. 80: 223–236.PubMedGoogle Scholar
  246. 246.
    Sharp, J. D., Capecchi, N. E., and Capecchi, M. R., 1973. Altered enzymes in drug-resistant variants of mammalian tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 70: 3145–3149.PubMedCentralPubMedGoogle Scholar
  247. 247.
    Sherman, F., Stewart, J. W., Jackson, M., Gilmore, R. A., and Parker, J. H., 1974, Mutants of yeast defective in iso-l-cytochrome c, Genetics 77: 255–284.Google Scholar
  248. 248.
    Sibley, C. H., and Tomkins, G. M., 1974, Isolation of lymphoma cell variants resistant to killing by glucocorticoids, Cell 2: 213–220.PubMedGoogle Scholar
  249. 249.
    Sibley, C. H., and Tomkins, G. M., 1974, Mechanisms of steroid resistance, Cell 2: 221–227.PubMedGoogle Scholar
  250. 250.
    Simons, J. W. I. M., 1974, Dose-response relationships for mutants in mammalian somatic cells in vitro, Mutat. Res 25: 219–227.Google Scholar
  251. 251.
    Siniscalco, M., Klinger, H. P., Eagle, H., Koprowski, H., Fujimoto, W. Y., and Seegmiller, J. E., 1969, Evidence for intergenic complementation in hybrid cells derived from two human diploid strains each carrying an X-linked mutation. Proc. Natl. Acad. Sci. U.S.A. 62: 793–799.PubMedCentralPubMedGoogle Scholar
  252. 252.
    Smith, B. J., and Wiggleworth, N. M., 1972, Cell line which is temperature-sensitive for cytokinesis, J. Cell. Physiol. 80: 253–260.PubMedGoogle Scholar
  253. 253.
    Smith, D. B., and Chu, E. H. Y., 1973, Isolation and characterization of temperature-sensitive mutants in a Chinese hamster cell line, Mutat. Res. 17: 113–120.PubMedGoogle Scholar
  254. 254.
    Smith, J. D., 1972, Genetics of transfer RNA, Annu. Rev. Genet. 6: 235–256.PubMedGoogle Scholar
  255. 255.
    Spolsky, C. M., and Eisenstadt, J. M., 1972, Chloramphenicol-resistant mutants of human HeLa cells, FEBS Lett. 25: 319–324.PubMedGoogle Scholar
  256. 256.
    Stamato, T. D., 1975, A replica plating method for Chinese ovary (CHO) cells using nylon cloth: application to mutant isolation, J. Cell. Biol. 67: 416a.Google Scholar
  257. 257.
    Stanley, P., Caillibot, V., and Siminovitch, L., 1975. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin, Somatic Cell Genet. 1: 3–26.PubMedGoogle Scholar
  258. 258.
    Stark, R. M., and Littlefield, J. W., 1974, Mutagenic effect of BUDR in diploid human fibroblasts, Murat. Res. 22: 281–286.Google Scholar
  259. 259.
    Stoker, M. G. P., 1964, A simple marker technique for cells in culture, Exp. Cell Res. 35: 429–431.PubMedGoogle Scholar
  260. 260.
    Stutts, P., and Brockman, R. W., 1963, A biochemical basis for resistance of L1210 mouse leukemia to 6-thioguanine, Biochem. Pharmacol. 12: 97–104.PubMedGoogle Scholar
  261. 261.
    Subak-Sharpe, J. H., Bürk, R. R., and Pitts, J. D., 1966. Metabolic co-operation by cell to cell transfer between genetically different mammalian cells in tissue culture, Heredity 21: 342–343.Google Scholar
  262. 262.
    Subak-Sharpe, H., Bürk, R. R., and Pitts, J. D., 1969, Metabolic cooperation between biochemically marked mammalian cells in tissue culture, J. Cell Sci. 4: 353–367.PubMedGoogle Scholar
  263. 263.
    Sun, N. C., Chang, C. C., and Chu, E. H. Y., 1974, Chromosome assignment of the human gene for galactose-l-phosphate uridyltransferase, Proc. Natl. Acad. Sci. U.S.A. 71: 404–407.PubMedCentralPubMedGoogle Scholar
  264. 264.
    Sutherland, E. W., and Rall, T. W., 1957, The properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg’, and epinephrine or glucagon, J. Am. Chem. Soc. 79: 3608.Google Scholar
  265. 265.
    Sutherland, E. W., and Rall, T. W., 1958, Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J. Biol. Chem. 232: 1077–1091.PubMedGoogle Scholar
  266. 266.
    Sutton, H. E., and Karp, G. W., Jr., 1970, Somatic variation in human glucose-6phosphate dehydrogenase, Genetics 64: s63.Google Scholar
  267. 267.
    Suzuki, F., and Horikawa, M., 1973, A replica plating method of cultured mammalian cells, in “Methods in Cell Biology,” Vol. 6 (D. M. Prescott, ed.), pp. 127–142, Academic Press, New York.Google Scholar
  268. 268.
    Suzuki, F., Kashimoto, M., and Horikawa. M., 1972, A replica plating method of cultured mammalian cells for somatic cell genetics, Exp. Cell. Res. 68: 476–479.Google Scholar
  269. 269.
    Szybalska, E. H., and Szybalski, W., 1962, Genetics of human cell lines. IV. DNA-mediated heritable transformation of a biochemical trait, Proc. Natl. Acad. Sci. U.S.A. 48: 2026–2034.PubMedCentralPubMedGoogle Scholar
  270. 270.
    Szybalski, W., Szybalska, E. H., and Ragni, G.. 1962, Genetic studies with human cell lines, Nat. Cancer Inst. Monogr. 7: 75–89.Google Scholar
  271. 271.
    Terasima, T., and Tolmach, L. J., 1963, Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells, Exp. Cell Res. 30: 344–362.PubMedGoogle Scholar
  272. 272.
    Thirion, J. J., Banville, D., and Noël, H., 1975, Chinese hamster somatic cell mutants resistant to 2-deoxygalactose, Genetics 80: s79-s80.Google Scholar
  273. 273.
    Thompson, L. H., and Baker, R. M., 1973. Isolation of mutants of cultured mammalian cells, in “Methods in Cell Biology,” Vol. 6 (D. M. Prescott, ed.), pp. 209–281, Academic Press, New York.Google Scholar
  274. 274.
    Thompson, L. H., Harkins, J. L., and Stanner, C. P., 1973, A mammalian cell mutant with a temperature sensitive leucyl-transfer RNA synthetase, Proc. Natl. Acad. Sci. U.S.A. 70: 3094–3098.PubMedCentralPubMedGoogle Scholar
  275. 275.
    Thompson, L. H., Mankovitz, R., Baker, R. M., Till, J. E.. Siminovitch, L., and Whitmore, G. F., 1970, Isolation of temperature-sensitive mutants of L-cells, Proc. Natl. Acad. Sci. U.S.A 66: 377–384.PubMedCentralPubMedGoogle Scholar
  276. 276.
    Thompson, L. H., Scanners, C. P., and Siminovitch. L., 1975, Selection by [’H]amino acids of CHO-cell mutants with altered leucyl-and asparagyl-transfer RNA synthetases, Somatic Celi Genet. 1: 187–208.Google Scholar
  277. 277.
    Tischfield, J. A., and Ruddle, F. H., 1974, Assignment of the gene for adenosine phosphoribosyltransferase to human chromosome 16 by mouse-human somatic cell hybridization, Proc. Natl. Acad. Sci. U.S.A. 71: 4519.Google Scholar
  278. 278.
    Tocchini-Valentini, G. P., Felicetti, L., and Rinaldi, G. M., 1969, Mutants of Escherichia coli blocked in protein synthesis: Mutants with an altered G factor, Cold Spring Harbor Symp. Quant. Biol. 34: 463–468.PubMedGoogle Scholar
  279. 279.
    Trembath, M. K., Bunn, C. L., Lukins. H. B.. and Linnane, A. W., 1973, Biogenesis of mitochondria 27. Genetic and biochemical characterization of cytoplasmic and nuclear mutations to spiramycin resistance in Saccharomyces cerevisiae, Mol. Gen. Genet. 121: 35–48.Google Scholar
  280. 280.
    Umbarger, H. E., 1971, Metabolite analogs as genetic and biochemical probes, Adv. Genet. 16: 119–140.PubMedGoogle Scholar
  281. 281.
    van Zeeland, A. A., and Simons, J. W. I. M., 1975, The effect of calf serum on the toxicity of 8-azaguanine, Mutat. Res. 27: 135–138.PubMedGoogle Scholar
  282. 282.
    van Zeeland, A. A., and Simons, J. W. I. M., 1976, Linear dose-response relationships after prolonged expression times in V79 Chinese hamster cells, Mutat. Res. 35: 129–138.PubMedGoogle Scholar
  283. 283.
    Wajntal, A., and DeMars, R., 1967, A tetrazolium method for distinguishing between cultured human fibroblasts having either normal or deficient levels of glucose-6phosphate dehydrogenase, Biochem. Genet. 1: 61–71.PubMedGoogle Scholar
  284. 284.
    Weisberger, A. S., 1962, Induction of altered globin synthesis in human immature erythrocytes incubated with ribonucleoprotein, Proc. Natl. Acad. Sci. U.S.A. 48: 6880.Google Scholar
  285. 285.
    Weiss, M. C., and Ephrussi, B., 1966, Studies of interspecific (rat x mouse) somatic hybrids. I. Isolation, growth and evolution of the karyotype, Genetics 54: 1095–1109.PubMedCentralPubMedGoogle Scholar
  286. 286.
    Weiss, M. C., and Green, H., 1967, Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes, Proc. Natl. Acad. Sci. U.S.A. 58: 1104–1111.PubMedCentralPubMedGoogle Scholar
  287. 287.
    Werkheiser, R., 1961, Specific binding of A-amino folic acid analogues by folic acid reductase, J. Biol. Chem. 236: 888–893.Google Scholar
  288. 288.
    Westerveld, A., Visser, R. P. L. S., Freeke, M. A., and Bootsma, D., 1972, Evidence for linkage of 3-phosphoglycerate kinase, hypoxanthine-guanine phosphoribosyl transferase, and glucose-6-phosphate dehydrogenase loci in Chinese hamster cells studied by using a relationship between gene multiplicity and enzyme activity. Biochem. Genet. 7: 33–40.PubMedGoogle Scholar
  289. 289.
    Whang-Peng, J., Tjio, J. H., and Cason, J. C., 1967, Reutilization of presumably degraded radioactive label from a chromosomal fraction of homologous and heterologous cells, Proc. Soc. Exp. Biol. Med. 125: 260–263.PubMedGoogle Scholar
  290. 290.
    Wild, D., 1974, Serum effect on the yield of chemically induced 8-azaguanineresistant mutants in Chinese hamster cell cultures, Mutat. Res. 25: 229–234.PubMedGoogle Scholar
  291. 291.
    Willecke, K., Davies, P. J., and Reber, T., Chromosomal gene transfer: properties of a new method for mapping closely linked human genes. Cytogenet. Cell Genet. in press.Google Scholar
  292. 292.
    Willecke, K., and Ruddle, F. H., 1975, Transfer of the gene for hypoxanthineguanine phosphoribosyltransferase of isolated human metaphase chromosomes into murine L-cells, Cytogent. Cell Genet. 14: 458–461.Google Scholar
  293. 293.
    Willecke, K., and Ruddle, F. H., 1975, Transfer of the human gene for hypoxanthine-guanine phosphoribosyltransferase via isolated metaphase chromosomes into mouse L-cells, Proc. Natl. Acad. Sci. U.S.A. 72: 1792–1796.PubMedCentralPubMedGoogle Scholar
  294. 294.
    Willingham, M. C., Carchman. R. A., and Pastan, I. H., 1973, A mutant 3T3 cell with cyclic AMP metabolism sensitive to temperature change, Proc. Natl. Acad. Sci. U.S.A. 70: 2906–2910.Google Scholar
  295. 295.
    Wolfner, M., Yep, D., Rasse-Messenguy, F., and Fink, G. R., 1975, Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae, J. Mol. Biol. 96: 273–290.Google Scholar
  296. 296.
    Woodward, V. W., DeZeeuw, J. R., and Srb, A. M., 1954, The separation and isolation of particular biochemical mutants of Neurospora by differential germination of conidia, followed by filtration and selective plating, Proc. Natl. Acad. Sci. U.S.A. 40: 192–200.PubMedCentralPubMedGoogle Scholar
  297. 297.
    Wullems, G. J., and Van der Horst, J., 1975, Electrophoretic pattern of hypoxanthine phosphoribosyltransferase produced in Chinese hamster cells following incorporation of human chromosomes, Cytogenet. Cell Genet. 14: 462–463.PubMedGoogle Scholar
  298. 298.
    Wullems, G. J., Van der Horst, J., and Bootsma, D., 1975, Incorporation of isolated metaphase chromosomes and induction of hypoxanthine phosphoribosyltransferase in Chinese hamster cells, Somatic Cell Genet. 1: 137–152.PubMedGoogle Scholar
  299. 299.
    Wuthier, P., Jones, C., and Puck, T. T., 1973, Surface antigens of mammalian cells as genetic markers, J. Exp. Med. 138: 229–244.PubMedCentralPubMedGoogle Scholar
  300. 300.
    Xeros, N., 1962, Deoxyriboside control and synchronization of mitosis, Nature 194: 682–683.PubMedGoogle Scholar
  301. 301.
    Yep, D., 1975, Triazole-alanine resistance in yeast, Ph. D. Thesis, Cornell University, New York.Google Scholar
  302. 302.
    Yerganian, G., and Nell, M. B., 1966, Hybridization of dwarf hamster cells by U V-inactivated Sendai virus, Proc. Natl. Acad..Sci. U.S.A. 55: 1066–1073.PubMedCentralPubMedGoogle Scholar
  303. 303.
    Yoshida, A., Beutler, E., and Motulsky, A. G., 1971, Table of human glucose-6phosphate dehydrogenase variants, Bull. W.H.O. 45: 243–253.PubMedCentralPubMedGoogle Scholar
  304. 304.
    Yosida, T. H., and Sekiguchi, T., 1968, Metaphase figures of rat chromosomes incorporated into mouse cells, Mol. Gen. Genet. 103: 253–257.PubMedGoogle Scholar
  305. 305.
    Zepp, H. D., Conover, J. H., Hirschhorn, K., and Hodes. H. L., 1971, Human-mosquito somatic cell hybrids induced by ultraviolet-inactivated Sendai virus, Nature (London) New Biol. 229: 119–121.Google Scholar
  306. 306.
    Clements, G. B., 1975, Selection of biochemical variant, in some cases mutant, mammalian cells, Adv. Cancer Res. 21: 273–390.PubMedGoogle Scholar
  307. 307.
    Siminovitch, L., 1976, On the nature of heritable variation in cultured somatic cells, Cell 7: 1–11.PubMedGoogle Scholar
  308. 308.
    Roy-Burman, P., 1970, “Analogues of Nucleic Acid Compounds,” Springer-Verlag, New York.Google Scholar
  309. 309.
    Naylor, S. L., Busby, L. L., and Klebe, R. J., 1976, Biochemical selection for mammalian cells: The essential amino acids, Somatic Cell Genet. 2: 93-I1l.PubMedGoogle Scholar
  310. 310.
    Thirion, J.-P., Banville, D., and Noël, H., 1976, Galactokinase mutants of Chinese hamster somatic cells resistant to 2-deoxygalactose, Genetics 83: 137–147.PubMedCentralPubMedGoogle Scholar
  311. 311.
    Fox, M., and Boyle, J. M., 1976, Factors affecting the growth of Chinese hamster cells in HAT selection media, Mutat. Res. 35: 465–478.Google Scholar
  312. 312.
    Jones, G. E., and Sargent, P. A., 1974, Mutants of cultured Chinese hamster cells deficient in adenine phosphoribosyl transferase, Cell 2: 43–54.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Ernest H. Y. Chu
    • 1
  • Sandra S. Powell
    • 1
  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations