Biochemical Genetics of Carbonic Anhydrase

  • Richard E. Tashian
  • Nicholas D. Carter
Part of the Advances in Human Genetics book series (AHUG, volume 7)


Carbonic anhydrase (EC carbonate dehydratase) appears to be present in placental mammals as two distinct molecular forms, or isozymes, which are apparently under the control of two closely linked autosomal genes. Next to hemoglobin, carbonic anhydrase is the most abundant protein to be found in human erythrocytes. This feature, together with the easily definable electrophoretic phenotypes of the two isozymes, and the relative ease with which they can be purified from hemolysates, has made the carbonic anhydrase isozyme system a particularly attractive one for the study of genetic variation in humans at the molecular level.


Carbonic Anhydrase Renal Tubular Acidosis Biochemical Genetic Human Carbonic Anhydrases Naphthyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, R. C., and Buettner-Janusch, J., 1973, Red cell and serum proteins of patas monkeys, Cercopithecus (= Ervthrocehus) paths, Folia Primatol. 20: 321.PubMedGoogle Scholar
  2. 2.
    Andersson, B., Nyman, P. O., and Strid, L., 1972, Amino acid sequence of human erythrocyte CA B, Biochem. Biophys. Res. Commun. 48: 670.Google Scholar
  3. 3.
    Anker, N., and Mondrup, M., 1974, Carbonic anhydrase isozyme B in erythrocytes of subjects with thyroid disorders, Clin. Clzim. Acta 54: 277.Google Scholar
  4. 4.
    Anyaibe, S. I. O., and Headings. V. E., 1975, Genetic aspects of quantitative variation in the carbonic anhydrases of the pig-tailed macaque. I. Response to thyroxine, Biochem. Genet. 13: 673.Google Scholar
  5. 5.
    Bernstein, I. S., 1966, Naturally occurring primate hybrid, Science 154: 1559.PubMedGoogle Scholar
  6. 6.
    Biddle, F. G., and Krasny, H., 1970, The association of carbonic anhydrase activity with the non-hemoglobin erythrocyte protein (Pro-1) of the house mouse, Can. J. Genet. Cytol. 12: 374.Google Scholar
  7. 7.
    Bladon, M. T., and Sipple, T. O., Unpublished results.Google Scholar
  8. 8.
    Bouquet, Y., and Van De Weghe, A., 1972, Some genetic systems with physiological properties in the blood of cattle. I. Carbonic anhydrase, Vlaams Diergeneeskd. Tijdschr. 41: 185.Google Scholar
  9. 9.
    Bouthier, M., Oriol, C., and Reynaud, J., 1973, Comparative study of the optical rotatory dispersion and circular dichroism of human erythrocyte carbonic anhydrases A and B, and conformational variants bl and b_. Biochimie 55: 37.PubMedGoogle Scholar
  10. 10.
    Byvoet, P., and Gotti, A., 1967, Isolation and properties of carbonic anhydrase from dog kidney and erythrocytes, Mol. Pharnatcol. 3: 142.Google Scholar
  11. 11.
    Carter, M. J., 1971, The carbonic anhydrase of the rumen epithelial tissue of the ox, Biochim. Biophys. Acta 235: 222.Google Scholar
  12. 12.
    Carter, M. J., 1972, Carbonic anhydrase: isoenzymes, properties, distribution, and functional significance, Biol. Rev. 47: 465.Google Scholar
  13. 13.
    Carter, N. D., 1972, Carbonic anhydrase II polymorphism in Africa, Hum. Hered. 22: 539.Google Scholar
  14. 14.
    Carter, N. D., 1972, Carbonic anhydrase isozymes in Caria porcel/us, Caria aperea and their hybrids, Comp. Biochem. Physiol. 43B: 743.Google Scholar
  15. 15.
    Carter, N. D., 1973, Characterization of an unstable carbonic anhydrase (CA II) variant in the guinea pig (Caria porcellus), Comp. Biochem. Physiol. 46B: 387.Google Scholar
  16. 16.
    Carter, N. D., 1974, Deficiency of a carbonic anhydrase (CA I) isoenzyme in the chinchilla. Anim. Blood Groups Biochem. Genet. 5: 53.Google Scholar
  17. 17.
    Carter, N., and Auton, J., 1975, Characterization of carbonic anhydrases from tissues of the cat, Biochim. Biophys. Acta 410: 220.Google Scholar
  18. 18.
    Carter, N. D., and Auton, J. A., 1976, Evidence for high (CA II) and low activity (CA I) carbonic anhydrase isoenzymes in the dog, Comp. Biochem. Physiol. 538: 461.Google Scholar
  19. 19.
    Carter, N. D., and Ferrell, R. E., Unpublished observations.Google Scholar
  20. 20.
    Carter, N. D., and Mulligan, B. J., 1973, Carbonic anhydrase variation in the cuis ( Galea musteloides ), Comp. Biochem. Physiol. 44B: 117.Google Scholar
  21. 21.
    Carter, N. D., Tanis, R. J., Tashian, R. E., and Ferrell, R. E., 1973, Characterization of a new variant of human red cell carbonic anhydrase I, CA If London (Glu-102 Lys), Biochem. Genet. 7: 399.Google Scholar
  22. 22.
    Carter, N. D., Tashian, R. E., Huntsman, R. G., and Sacker, L., 1972, Characterization of two new variants of red cell carbonic anhydrase in the British population: CA le Portsmouth and CA le Hull, Am. J. Hum. Genet. 24: 330.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Christiansen, E., and Magid, E., 1970, Effects of phosphate, HEPES, N2O and CO on the kinetics of human erythrocyte carbonic anhydrases B and C, Biochim. Biophys. Acta 220: 630.Google Scholar
  24. 24.
    Conley, C. L., Weatherall, D. J., Richardson, S. N., Sephard, M. K., and Charache, S., 1963, Hereditary persistence of fetal hemoglobin: a study of 79 affected persons in 15 Negro families in Baltimore, Blood 21: 261.PubMedGoogle Scholar
  25. 25.
    Darga, L. L., Goodman, M., Weiss, M. L., Moore, G. W., Prychodko, W., Dene, H., Tashian, R., and Koen, A., 1975, Molecular systematics and clinal variation in macaques, in “Isozymes,” Vol. 4 (C. L. Markert, ed.), pp. 797–812, Academic Press, New York.Google Scholar
  26. 26.
    Denton, M. J., Spencer, N., and Arnstein, H. R. V., 1975, Biochemical and enzymatic changes during erythrocyte differentiation, Biochem. J. 146: 205PubMedCentralPubMedGoogle Scholar
  27. 27.
    Derrien, Y., and Laurent, G., 1969, Les anhydrases carboniques erythrocytaires, Expo. Annu. Biochim. Med. 29: 167.Google Scholar
  28. 28.
    Derrien, Y., Laurent, G., and Borgomano, M., 1956, Sur une protéine accompagnant l’hémoglobine de l’homme adulte et sa concentration dans la fraction alcalinorésistante isolée de cette dernière, C. R. Acad. Sci. (Paris) 242: 1538.Google Scholar
  29. 29.
    DeSimone, J., Daufi, L. M., and Tashian, R. E., 1971, A semi-quantitative method for determining levels of carbonic anhydrase isozymes in individual red blood cells, Exp. Cell Res. 26: 338.Google Scholar
  30. 30.
    DeSimone, J., Linde, M., and Tashian, R. E., 1973, Evidence for linkage of carbonic anhydrase isozyme genes in the pig-tailed macaque, Macaca nemestrina, Nature (London) New Biol. 242: 55.Google Scholar
  31. 31.
    DeSimone, J., Magid, E., Linde, M., and Tashian, R. E., 1973, Genetic variation in the carbonic anhydrase isozymes of macaque monkeys. III. Biosynthesis of carbonic anhydrases in bone marrow erythroid cells and peripheral blood reticulocytes of Macaca nemestrina, Arch. Biochem. Biophys. 158: 365.Google Scholar
  32. 32.
    DeSimone, J., Magid, E., and Tashian, R. E., 1973, Genetic variation in the carbonic anhydrase isozymes of macaque monkeys. II. Inheritance of red cell carbonic anhydrase levels in different carbonic anhydrase I genotypes of the pigtailed macaque, Macaca nemestrina, Biochem. Genet. 8: 165.Google Scholar
  33. 33.
    Deutsch, H. F., and Bray, R. P., 1975, Carbonic anhydrase isozymes in American ponies and riding horses: a new polymorphic high-activity type isozyme, Biochem. Genet. 13: 643.Google Scholar
  34. 34.
    Deutsch, H. F., Funakoshi, S., Fujita, T., Taniguchi, N., and Hirai, H., 1972, Isolation in crystalline form of properties of six horse erythrocyte carbonic anhydrases, J. Biol. Chem. 247: 4499.PubMedGoogle Scholar
  35. 35.
    Deutsch, H. F., Taniguchi, N., Funakoshi, S., and Hirai, H., 1972, Distribution of erythrocyte carbonic anhydrase B-type alleles in Japanese farm horses, Biochem.Genet. 6: 255.PubMedGoogle Scholar
  36. 36.
    Edsall, J. T., 1968, The carbonic anhydrase of erythrocytes, Harvey Lect. 62: 191.Google Scholar
  37. 37.
    Eicher, E., and Stern, R. Unpublished results.Google Scholar
  38. 38.
    Falk, R. J., and Hodgen, G. D., 1971, Carbonic anhydrase isoenzymes in normal human endometrium and erythrocytes, Am. J. Obstet. Gynecol. 112: 1047.Google Scholar
  39. 39.
    Fooden, J., 1964, Rhesus and crab-eating macaques: integration in Thailand, Science 143: 363.PubMedGoogle Scholar
  40. 40.
    Funakoshi, S., and Deutsch, H. F., 1969, Human carbonic anhydrases. II. Some physicochemical properties of native isozymes and of similar isozymes generated in vitro, J. Biol. Chem. 244: 3438.PubMedGoogle Scholar
  41. 41.
    Funakoshi, S., and Deutsch, H. F., 1970, Human carbonic anhydrases. IV. Properties of a mutant B type isozyme, J. Biol. Chem. 245: 4913.PubMedGoogle Scholar
  42. 42.
    Funakoshi, S., and Deutsch, H. F., 1971, Human carbonic anhydrases. V. Levels in erythrocytes in various states, J. Lab. Clin. Med. 77: 39.Google Scholar
  43. 43.
    Funakoshi, S., and Deutsch, H. F., 1971, Human carbonic anhydrases. VI. Levels of isozymes in old and young erythrocytes and in various tissues, J. Biol. Chem. 246: 1088.PubMedGoogle Scholar
  44. 44.
    Garg, L. C. 1974, The effect of sex hormones on rat liver carbonic anhydrase, J. Pharmacol. Exp. Ther. 189: 557.PubMedGoogle Scholar
  45. 45.
    Giblett, E. R., Hillman. R. S., and Brooks, L. E., 1971, Transfusion reaction during marrow suppression in a thalassemic patient with a blood group anomaly and an unusual cold agglutinin, Vox Sang. 10: 448.Google Scholar
  46. 46.
    Giraud, N., Marriq, C., and Laurent-Tabusse, G., 1974, Structure primaire de l’anhydrase carbonique érythrocytaire B humaine. III. Séquence des fragments ICNBr et IIICNBr (résidus 149–260), Biochimie 56: 1031.PubMedGoogle Scholar
  47. 47.
    Goodman, M., Moore, G. W., and Barnabas, J.. 1974, The phylogeny of human globin genes investigated by the maximum parsimony method, J. Mol. Evol. 3: I.Google Scholar
  48. 48.
    Gulian, J.-M., Limozin, N., Charrel, M., Laurent, G., and Derrien, Y., 1974, Les deux iso-enzymes de l’anhydrase carbonique érythrocytaire bovine différent par une substitution Arg -* Gln en position 56, C. R. Acad. Sci. (Paris) 278: 1123.Google Scholar
  49. 49.
    Headings, V. E., 1973, Quantitative variation in erythrocyte enzymes of the pigtailed macaque, Macaca nemestrina, J. Med. Primato!. 2: 100.Google Scholar
  50. 50.
    Headings, V. E., 1974, Mechanisms of gene product diversification in primate carbonic anhydrase, J. Hum. Evol. 3: 101.Google Scholar
  51. 51.
    Headings, V. E., and Tashian, R. E., 1970, A radioimmunoassay for quantifying carbonic anhydrase isozymes in crude lysates, Biochem. Genet. 4: 285.Google Scholar
  52. 52.
    Headings, V. E., and Tashian, R. E., 1970, Differential inhibition of red cell carbonic anhydrase isozymes in hyperthyroidism, Nature 228: 1197.PubMedGoogle Scholar
  53. 53.
    Headings, V. E., and Tashian, R. E., 1971, Quantitative genetic variation in carbonic anhydrase isozymes from tissues of the pig-tailed macaque, Macaca nemestrina, Biochem. Genet. 5: 333.Google Scholar
  54. 54.
    Headings, V. E., and Tashian, R. E., 1971, Isoenzymes of carbonic anhydrase I from primate red blood cells, Biochim. Biophys. Acta 236: 353.Google Scholar
  55. 55.
    Henderson, L. E., Henriksson, D., and Nyman, P. 0., 1973, Amino acid sequence of human erythrocyte carbonic anhydrase C, Biochem. Biophys. Res. Commun. 52: 1388.PubMedGoogle Scholar
  56. 56.
    Hewett-Emmett, D., Cook, C. N., and Barnicot, N. A., Old World monkey haemoglobins: deciphering phylogeny from complex patterns of molecular evolution, in “Molecular Anthropology” (M. Goodman and R. E. Tashian, eds.), Plenum Press, New York, in press.Google Scholar
  57. 57.
    Hodgen, G. D., and Falk, R. J., 1971, Estrogen and progesterone regulation of carbonic anhydrase isoenzymes in guinea pig and rabbit uterus, Endocrinology 89: 859.PubMedGoogle Scholar
  58. 58.
    Hodgen, G. D., Gomes, W. R., and Vandemark, N. L., 1971, A testicular isoenzyme of carbonic anhydrase, Biol. Reprod. 4: 224.Google Scholar
  59. 59.
    Hopkinson, D. A., Coppock, J. S., Mühlemann, M. F., and Edwards, Y. H., 1974, The detection and differentiation of the products of the human carbonic anhydrase loci, CA, and CA„ using fluorogenic substrates, Ann. Hum. Genet. 38: 155.PubMedGoogle Scholar
  60. 60.
    Kaiser, E. T., and Lo, K.-W., 1969, The carbonic anhydrase catalyzed hydrolysis of 2-hydroxy-5-nitro-a-toluenesulfonic acid sultone, J. Am. Chem. Soc. 91: 4912.Google Scholar
  61. 61.
    Kannan, K. K., Liljas, A., Waara, I., Bergstén, P.-C., Lövgren, S., Strandberg, B., Bengtsson, U., Carlbom. U., Fridborg, K., Järup, L., and Petef, M., 1971, Crystal structure of human erythrocyte carbonic anhydrase C. Relation to other mammalian carbonic anhydrases, Cold Spring Harbor Symp. Quant. Biol. 36: 221.Google Scholar
  62. 62.
    Kannan, K. K., Notstrand, B., Fridborg, K., Lövgren, S., Ohlsson, A., and Petef, M., 1975, Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2 A resolution, Proc. Natl. Acad. Sci. U.S.A. 72: 51.Google Scholar
  63. 63.
    Keilin, D., and Mann, T., 1940, Carbonic anhydrases. Purification and nature of the enzyme, Biochem. J. 34: 1163.Google Scholar
  64. 64.
    Khalifah, R. G., 1971, The carbonic dioxide hydration activity of carbonic anhydrase. Stop-flow kinetic studies on the native isoenzymes B and C. J. Biol. Chem. 246: 2561.PubMedGoogle Scholar
  65. 65.
    King, R. W., Garg, L. C., Huckson, J., and Maren, T. H., 1974, The isolation and partial characterization of sulfonamide-resistant carbonic anhydrases from the liver of the male rat, Mol. Pharmacol. 10: 335.Google Scholar
  66. 66.
    Klee, M. R., and Liefländer, 1965, Über das Vorkommen von Zink und Carbonathydro-Iyase im Kaninchenhirn, Z. Physiol. Chem. 341: 143.Google Scholar
  67. 67.
    Kleinman, L. I., Sell, J. E., and Petering, H. G., 1972, Carbonic anhydrase isoenzymes in infants with respiratory distress syndrome, Am. J. Dis. Child. 124: 646.Google Scholar
  68. 68.
    Kloster, G., Larsen, B., and Nielsen, P. B., 1970, Carbonic anhydrase polymorphism in cattle and swine, Acta Vet. Scand. 11: 318.Google Scholar
  69. 69.
    Laurent, G., Castay, M., Marrig, C., Garçon, D., Charrel, M., and Derrien, Y., 1963, Composition en amino acides et hydrolyse trypsique de anhydrases carbonique humaines X, et Y, Biochim. Biophys. Acta 77: 518.Google Scholar
  70. 70.
    Laurent, G., Depieds, R., and Derrien, Y., 1958, Origine endoglobulaire des protéines accompagnant l’hémoglobine humaine dans ses préparations, C. R. Soc.Biol. ( Paris ) 152: 113.Google Scholar
  71. 71.
    Laurent, G., Marrig, C., Nahon, D., Charrel, M., and Derrien, Y., 1962, Isolement des protéines “lentes” Y, X, et X2 accompagnant l’hémoglobine humaine dans ses préparations, C. R. Soc. Biol. (Paris) 156: 1456.Google Scholar
  72. 72.
    Lie-Injo, L. E., 1967, Carbonic anhydrase and fetal hemoglobin in thyrotoxicosis, Blood 30: 442.Google Scholar
  73. 73.
    Lie-Injo, L. E., 1967, Red cell carbonic anhydrase le in Filipinos. Am. J. Hum. Genet. 19: 130.Google Scholar
  74. 74.
    Lie-Injo, L. E., McKay, D. A., and Govindasamy, S., 1971, Genetic red cell abnormalities in Trengganu and Perlis (West Malaysia), Southeast Asian J. Trop. Med. Pub. Health 2: 133.Google Scholar
  75. 75.
    Lie-Injo, L. E., and Poey-Oey, H. G., 1970, Phosphoglucomutase, carbonic anhydrase, and catalase in Indonesians, Hum. Hered. 20: 215.Google Scholar
  76. 76.
    Lie-Injo, L. E., and Tarail, R., 1966, Carbonic anhydrase deficiency with persistence of fetal haemoglobin, Nature 211: 47.Google Scholar
  77. 77.
    Liljas, A., Kannan, K. K., Bergstén, P.-C., Waara, I., Fridborg, K., Strandberg, B.,Carlbom, U., Järup, L., Lövgren, S., and Petef, M., 1972, Crystal structure of human carbonic anhydrase C, Nature (London) New Biol. 235: 131.Google Scholar
  78. 78.
    Lin, K.-T. D., and Deutsch, H. F., 1972, Human carbonic anhydrases. VIII. Isolation and characterization of a polymorphic form of a C type isozyme, J. Biol. Chem. 247: 3761.PubMedGoogle Scholar
  79. 79.
    Lin, K.-T. D., and Deutsch, H. F., 1973, Human carbonic anhydrases. XI. The complete primary structure of carbonic anhydrase B, J. Biol. Chem. 248: 1885.PubMedGoogle Scholar
  80. 80.
    Lin, K.-T. D., and Deutsch, H. F., 1974, Human carbonic anhydrases. XII. The complete primary structure of the C isozyme, J. Biol. Chen:. 249: 2329.Google Scholar
  81. 81.
    Lindskog, S., Henderson, L. E., Kannan, K. K., Liljas, A., Nyman, P. 0., and Strandberg, B., 1971, Carbonic anhydrase, in “The Enzymes.” Vol. V (P. D. Boyer, ed.), pp. 587–665, Academic Press, New York.Google Scholar
  82. 82.
    McIntosh, J. E. A., 1969, Carbonic anhydrase isoenzymes in the erythrocytes and dorsolateral prostate of the rat, Biochem. J. 114: 463.PubMedCentralPubMedGoogle Scholar
  83. 83.
    McIntosh, J. E. A., 1970, Carbonic anhydrase isoenzymes in the erythrocytes and uterus of the rabbit, Biochem. J. 120: 299.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Magid, E., 1968, The dehydration kinetics of human erythrocytic carbonic anhydrases B and C, Biochim. Biophys. Acta 151: 236.Google Scholar
  85. 85.
    Magid, E., 1970, Erythrocyte carbonic anhydrase B levels in thyroid disorders,Lancet ií:1342Google Scholar
  86. 86.
    Magid, E., 1970, Determination of erythrocyte carbonic anhydrase B and C: an aid in the diagnosis of thyroid disorders?, Scand. J. Clin. Lab. Invest. 26: 257.PubMedGoogle Scholar
  87. 87.
    Magid, E., 1972, Clinical significance of carbonic anhydrase determinations with particular reference to thyroid disorders, Alfred Benton Symp. IV: 438.Google Scholar
  88. 88.
    Magid, E., DeSimone, J., and Tashian, R. E., 1973. Genetic variation in the carbonic anhydrase isozymes of macaque monkeys. I. The radioimmunosorbent assay, Biochem. Genet. 7: 157.Google Scholar
  89. 89.
    Mann, T., and Kielin, D., 1940, Sulfanilamide as a specific inhibitor of carbonic anhydrase, Nature 146: 164.Google Scholar
  90. 90.
    Maren, T. H., 1967, Carbonic anhydrase: chemistry, physiology, and inhibition, Physiol. Rev. 47: 595.Google Scholar
  91. 91.
    Meldrum, N. U., and Roughton, F. J. W., 1932, Some properties of carbonic anhydrase, the CO2 enzyme present in blood, J. Physiol. (London) 75: 15 P.Google Scholar
  92. 92.
    Meldrum, N. V., and Roughton, F. J. W., 1933, Carbonic anhydrase: its preparation and properties, J. Physiol. (London) 80: 113.Google Scholar
  93. 93.
    Mondrup, M., and Anker, N., 1974, Carbonic anhydrase isoenzyme B in the erythrocytes of uremic subjects, Clin. Chim. Acta 51: 141.Google Scholar
  94. 94.
    Moore, G. W., Barnabas, J., and Goodman, M., 1973, A method for constructing maximum parsimony ancestral amino acid sequences on a given network, J. Theoret. Biol. 38: 459.Google Scholar
  95. 95.
    Moore, M. J., Deutsch, H. F., and Ellis. F. R., 1973, Human carbonic anhydrases. IX. Inheritance of variant erythrocyte forms. Am. J. Hum. Genet. 25: 29.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Moore, M. J., Funakoshi, S., and Deutsch, H. F., 1971, Human carbonic anhydrases. VII. A new C type isozyme in erythrocytes of American negroes, Biochem. Genet. 5: 497.Google Scholar
  97. 97.
    Nesturkh, M., 1959, “The Origin of Man,” Foreign Languages Publishing House, Moscow.Google Scholar
  98. 98.
    Nicholls, R. A., and Board, J. A., 1967. Carbonic anhydrase concentration in endometrium after oral progestins, Am. J. Obstet. Gynecol. 99: 829.PubMedGoogle Scholar
  99. 99.
    Norgaard-Pedersen, B., and Lindholm, J., 1972, Quantitation of red cell carbonic anhydrases B and C and hemoglobin F in thyroid disorders, Acta Med. Scand. 192: 227.Google Scholar
  100. 100.
    Notstrand, B., Vaara, I., and Kannan, K. K., 1975, Structural relationship of human erythrocyte carbonic anhydrase isozymes B and C, in “Isozymes,” Vol. 1 (C. L. Markert, ed.), pp. 575-599, Academic Press, New York.Google Scholar
  101. 101.
    Nozawa, K., Shotake, T., and Okura, Y., 1975, Blood protein polymorphisms and population structure of the Japanese macaque, Macaca fuscata, in “Isozymes,” Vol. 4 (C. L. Markert, ed.), pp. 225–241, Academic Press, New York.Google Scholar
  102. 102.
    Nyman, P. 0., 1961, Purification and properties of carbonic anhydrase from human erythrocytes, Biochim. Biophys. Acta 52: 1.Google Scholar
  103. 103.
    Nyman, P. O., and Lindskog, S., 1964, Amino acid composition of various forms of bovine and human erythrocyte carbonic anhydrase, Biochim. Biophys. Acta 85: 141.Google Scholar
  104. 104.
    Oliver, T. J., Buettner-Janusch, J., and Buettner-Janusch, V., 1974, Carbonic anhydrase isoenzymes in nine troops of Kenya baboons, Papio cynocephalus (Linnaeus 1766), Am. J. Phys. Anthropol. 41: 175.Google Scholar
  105. 105.
    Osborne, W. R. A., and Tashian, R. E., 1974, Thermal inactivation studies of normal and variant human erythrocyte carbonic anhydrases using a sulphonamide binding assay, Biochem. J. 141: 219.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Osborne, W. R. A., and Tashian, R. E., 1975, An improved method for the purification of carbonic anhydrase isozymes by affinity chromatography, Anal. Biochem. 64: 297.Google Scholar
  107. 107.
    Osborne, W. R. A., and Tashian, R. E., 1975, Proteolytic degradation of human carbonic anhydrase isozymes using a-chymotrypsin, !sozyme Bull., No. 9, p. 26.Google Scholar
  108. 108.
    Pocker, Y., and Meany, J. E., 1965, The catalytic versatility of carbonic anhydrase from erythrocytes. The enzyme-catalyzed hydration of acetaldehyde, J. Am. Chem. Soc. 87: 1809.PubMedGoogle Scholar
  109. 109.
    Prasad, A. S., Schoomaker, E. B., Ortega, J., Brewer, G. J.. Oberleas, D., and Oelshlegel, F. J., 1975, Zinc deficiency in sickle cell disease, Clin. Chem. 21: 582.Google Scholar
  110. 110.
    Rickli, E. E., and Edsall, J. T., 1962, Zinc binding and the sulfhydryl group of human carbonic anhydrase, J. Biol. Chem. 237:PC258.Google Scholar
  111. 111.
    Rickli, E. E., Ghazanfar, S. A. S., Gibbons, B. H., and Edsall, J. T., 1964, Carbonic anhydrase from human erythrocytes. Preparation and properties of two enzymes, J. Biol. Chem. 239: 1065.PubMedGoogle Scholar
  112. 112.
    Sandberg, K., 1968, Genetic polymorphism in carbonic anhydrase from horse erythrocytes, Hereditas 60: 411.Google Scholar
  113. 113.
    Sartore, G., Stormont, C., Morris, B. G., and Grunder, A. A., 1969, Electrophoretic forms of esterase and carbonic anhydrase in red cells of cattle and bison, Genetics 61: 823.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Schneider, F., and Liefländer, M., 1963, Uber die Reaktion von Carbonat-hydrolyase mit p-Nitrophenylacetat, Z. Physiol. Chem. 334: 279.Google Scholar
  115. 115.
    Sciaky, M., and Laurent, G., 1976, Evidence for high and low activity carbonic anhydrases in the red cell of the dog, FEBS Lett. 63: 141.PubMedGoogle Scholar
  116. 116.
    Sciaky, M., Limozin, N., Fillippi-Foveau, D., Gulian, J.-M., Dalmasso, C.. and Laurent, G., 1974, Structure primaire de l’anhydrase carbonique érythrocytaire bovine CI, C. R. Acad. Sci. (Paris) 279: 1217.Google Scholar
  117. 117.
    Sell, J. E., and Petering, H. G., 1974, Carbonic anhydrases from human neonatal erythrocytes, J. Lab. Clin. Med. 84: 369.PubMedGoogle Scholar
  118. 118.
    Shapira, E., Personal communication.Google Scholar
  119. 119.
    Shapira, E., Ben-Yoseph, Y., Eyal, F. G., and Russell, A., 1974, Enzymatically inactive red cell carbonic anhydrase B in a family with renal tubular acidosis, J. Clin. Invest. 53: 59.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Shaw, C. R., Syner, F. N., and Tashian, R. E., 1962, New genetically determined molecular form of erythrocyte esterase in man, Science 138: 31.PubMedGoogle Scholar
  121. 121.
    Shows, T. B., 1967, The amino acid substitution and some chemical properties of a variant human erythrocyte carbonic anhydrase: Carbonic anhydrase Id Michigan, Biochem. Genet. 1: 171.Google Scholar
  122. 122.
    Simmons, R. T., Graydon, J. J., GAjdusek, D. C., and Brown, P., 1965, Blood group genetic variations in natives of the Caroline Islands and in other parts of Micronesia, Oceania 36: 132.Google Scholar
  123. 123.
    Soliman, M. H., and Kluh, I., 1974, Isolation of carbonic anhydrase from dog erythrocytes and determination of its N-terminal sequence. Eur. J. Biochem. 44: 611.PubMedGoogle Scholar
  124. 124.
    Soos, P., 1970, Carbonic anhydrase polymorphism in some Hungarian cattle breeds, Proc. 12th Conf. Animal Blood Groups and Biochem. Polymorphism, Budapest, pp. 191 — I95.Google Scholar
  125. 125.
    Stern, R., and Tashian, R. E., Thyroid status and carbonic anhydrase levels in mouse erythrocytes, Proc. Soc. Exp. Biol. Med., in press.Google Scholar
  126. 126.
    Stryer, L., 1968, Fluorescence spectroscopy of proteins, Science 162: 526.PubMedGoogle Scholar
  127. 127.
    Tanis, R. J., Ferrell, R. E., and Tashian, R. E., 1973, Substitution of lysine for threonine at position 100 in human carbonic anhydrase Id Michigan, Biochem. Biophys. Res. Commun. 51: 699.Google Scholar
  128. 128.
    Tanis, R. J., Ferrell, R. E., and Tashian, R. E., 1974, Amino acid sequence of sheep carbonic anhydrase C, Biochim. Biophys. Acta 371: 534.Google Scholar
  129. 129.
    Tanis, R. J., Osborne, W. R. A., Ueda, N., and Tashian. R. E., Biochemical characterization of the human red cell carbonic anhydrase variant CA Ih Hiroshima, Humangenetik, in press.Google Scholar
  130. 130.
    Tanis, R. J., and Tashian, R. E., 1971, Purification and properties of carbonic anhydrase from sheep erythrocytes, Biochemistry 10: 4852.PubMedGoogle Scholar
  131. 131.
    Tashian, R. E., 1961, Multiple forms of esterases from human erythrocytes, Proc. Soc. Exp. Biol. Med. 108: 364.PubMedGoogle Scholar
  132. 132.
    Tashian, R. E., 1965, Genetic variation and evolution of the carboxylic esterases and carbonic anhydrases of primate erythrocytes, Am. J. Hum. Genet. 17: 257.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Tashian, R. E., 1969, Discussion, in “CO,: Chemical. Biochemical, and Physiological Aspects” (R. E. Forster, J. T. Edsall, A. B. Otis. and F. J. W. Roughton, eds.), p. 127, NASA SP-188, Washington, D.C.Google Scholar
  134. 134.
    Tashian, R. E., 1969, The esterases and carbonic anhydrases of human erythrocytes, in “Biochemical Methods in Red Cell Genetics” (J. J. Yunis, ed.), pp. 307-336, Academic Press, New York.Google Scholar
  135. 135.
    Tashian. R. E., 1970, Hydrogen-tritium exchange in human erythrocyte carbonic anhydrases B and C, Compt. Rend. Tray. Lab. Carlsberg 37: 359.Google Scholar
  136. 136.
    Tashian. R. E., Unpublished data.Google Scholar
  137. 137.
    Tashian, R. E., Ahern, E. J., Ahern, V., and Yu. Y.-S. L., Red cell carbonic anhydrase variants in the black “Maroon” population of western Jamaica, W.I. Frequency of the CA II allele. CA IT’, and report of a new variant, CA Ih Jamaica, in preparation.Google Scholar
  138. 138.
    Tashian, R. E., Douglas, D. P., and Yu. Y.-S. L.. 1964. Esterase and hydrase activity of carbonic anhydrase-I from primate erythrocytes. Biochem. Biophys. Res. Commun. 41: 237.Google Scholar
  139. 139.
    Tashian, R. E., Goodman. M., Headings, V. E., DeSimone, J., and Ward, R. H.,1971, Genetic variation and evolution in the red cell carbonic anhydrase isozymes of macaque monkeys, Biochem. Genet. 5: 183.Google Scholar
  140. 140.
    Tashian, R. E., Goodman, M., Ferrell, R. E., and Tanis, R. J., Evolution of carbonic anhydrase in primates and other mammals, in “Molecular Anthropology” (M. Goodman and R. E. Tashian, eds.), Plenum Press, New York, in press.Google Scholar
  141. 141.
    Tashian, R. E., Plato, C. C., and Shows, T. B., 1963, Inherited variant of erythrocyte carbonic anhydrase in Micronesians from Guam and Saipan, Science 140: 53.PubMedGoogle Scholar
  142. 142.
    Tashian, R. E., Riggs, S. K., and Yu, Y.-S. L., 1966, Characterization of a mutant human erythrocyte carbonic anhydrase: carbonic anhydrase le Guam. The amino acid substitution and carboxylesterase and hydratase activities, Arch. Biochem. Biophys. 117: 320.Google Scholar
  143. 143.
    Tashian, R. E., Shreffler, D. C., and Shows, T. B., 1968, Genetic and phylogenetic variation in the different molecular forms of mammalian erythrocyte carbonic anhydrases, Ann. N.Y. Acad. Sci. 151: 64.Google Scholar
  144. 144.
    Tashian, R. E., Tanis, R. J., and Ferrell, R. E., 1972, Comparative aspects of the primary structures and activities of mammalian carbonic anhydrases, Alfred Benzon Symp. IV: 353.Google Scholar
  145. 145.
    Tashian, R. E., and Weymes, H., Unpublished data.Google Scholar
  146. 146.
    Tashian, R. E., and Yu, Y.-S. L., 1972, Effect of chlorthalidone binding on the electrophoretic properties of human red cell carbonic anhydrase isozymes, in “Hemoglobin and Red Cell Structure and Function” (G. J. Brewer, ed.), pp. 209213, Plenum Press, New York.Google Scholar
  147. 147.
    Thompson, L., 1947, “Guam and Its PeopleUniversity Press, Princeton, New Jersey.Google Scholar
  148. 148.
    Tucker, E. M., Suzuki, Y., and Stormont, C., 1967, Three new phenotypic systems in the blood of sheep, Vox Sang. 13: 246.PubMedGoogle Scholar
  149. 149.
    Ueda, N., 1974, New Japanese variant of human erythrocyte carbonic anhydrase, Jap. J. Hum. Genet. 19: 161.Google Scholar
  150. 150.
    Ueda, N., Unpublished data.Google Scholar
  151. 151.
    Verporte, J. A., Mehta, S., and Edsall, J. T., 1967, Esterase activities of human carbonic anhydrases B and C, J. Biol. Chem. 242: 4221.Google Scholar
  152. 152.
    Weatherall, D. J., Clegg, J. B., Wood, W. G., Callender, S. T., Sheridan, B. L., and Pritchard, J., 1975, Foetal erythropoiesis in human leukaemia, Nature 257: 710.PubMedGoogle Scholar
  153. 153.
    Weatherall, D. J., and McIntyre, P. A., 1967, Developmental and acquired variations in erythrocyte carbonic anhydrase isozymes, Br. J. Haematol. 13: 106.PubMedGoogle Scholar
  154. 154.
    Wehinger, H., 1973, Zur Natur und ontogenetischen Entwicklung von Carbonanhydrase-isoenzymen in menschlichen Erythrozyten, Blut 27: 172.PubMedGoogle Scholar
  155. 155.
    Wehinger, H., 1973, Untersuchunger über die Erythrocyten-carbonanhydrasen bei pathologischen Zuständen im Kindesalter, Z. Kinderheilkd. 114: 163.Google Scholar
  156. 156.
    Wehinger, H., Kempe, H., and Petrykowski, W. V., 1974, Erythrozyten-carbonanhydrase I bei Störungen der Schilddrüsenfunktion, Klin. Paediatr. 186: 158.Google Scholar
  157. 157.
    Welch, S., 1975, Population and family studies on carbonic anhydrase II polymorphism in Gambia, West Africa, Humangenetik 27: 163.PubMedGoogle Scholar
  158. 158.
    Welch, S. G., Unpublished data.Google Scholar
  159. 159.
    Welch, Q. B., Lie-Injo, L. E., and Boulton, J. M., 1972, Phosphoglucomutase and carbonic anhydrase in West Malaysian aborigines. Hum. Hered. 22: 28.PubMedGoogle Scholar
  160. 160.
    Wistrand, P. J., and Rao, S. N., 1968, Immunologic and kinetic properties of carbonic anhydrases from various tissues, Biochim. Biophys. Acta 154: 130.Google Scholar
  161. 161.
    Committee on standardized genetic nomenclature for mice, 1975, Guidelines for nomenclature of genetically determined biochemical variants in the house mouse, Mus musculus, Biochem. Genet. 9: 369.Google Scholar
  162. 162.
    Eicher, E. M., Stern, R. H., Womack, J. E., Davisson, M. T., Roderick, T. H., and Reynolds, S. C., 1976, Evolution of mammalian carbonic anhydrase loci by tandem duplication; close linkage of Car-1 and Car-2 to the centromere region of chromosome 3 of the mouse, Biochem. Genet. 14: 651.Google Scholar
  163. 163.
    Kendal, A. G., and Tashian, R. E., 1976, Inherited deficiences of red blood cell carbonic anhydrase I (CA I) in a family from the Greek Island of Ikaria, Abstracts, V Intl. Congr. Human Genetics, Mexico D. F., October 1976, in press.Google Scholar
  164. 164.
    Hsu, S. S., Unpublised data.SGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Richard E. Tashian
    • 1
  • Nicholas D. Carter
    • 2
  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of BiochemistryLondon Hospital Medical College University of LondonLondonEngland

Personalised recommendations