The Role of Collagen in Determining Ultrasonic Propagation Properties in Tissue

  • W. D. O’BrienJr.


The processes responsible for affecting the propagation of an ultrasonic wave as it passes through biological tissue are poorly understood. In large part, the research into this area is at a correlation level as contrasted to a modelling level. In other words, contemporary research is studying the relationships between ultrasonic properties of tissue and other tissue properties in order to elucidate trends. With very few important exceptions, minute information has prevented any successful modelling.


Ultrasonic Velocity Ultrasonic Attenuation World Federation Infant Brain Ultrasonic Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. L. Altman and D. S. Dittmer. Blood and Other Body Fluids. Federation of American Societies for Experimental Biology, Washington, D. C. (1961).Google Scholar
  2. Z. E. Begui. Acoustic Properties of the Refractive Media of the Eye. J. Acoust. Soc. Amer., 26, 365–368 (1954). Biology Today. CRM Books, Del Mar, California (1972).Google Scholar
  3. W. Bloom and D. W. Fawcett. A Textbook of Histology. W. B. Saunders, Co., Philadelphia (1968).Google Scholar
  4. V. Bradley. Elementary Microstudies of Human Tissue. Charles C. Thomas, Springfield, Illinois (1972).Google Scholar
  5. K. Brady, S. A. Goss, R. L. Johnston, W. D. O’Brien, Jr. and F. Dunn. Ultrasonic Propagation Properties of Mammalian Testes. J. Acoust. Soc. Amer., (in press). (1976).Google Scholar
  6. L. Carstensen. The Mechanism of the Absorption of Ultrasound in Biological Materials. IRE Trans. Med. Electronics, ME-7 158–162 (1960).Google Scholar
  7. L. Carstensen, K. Li and H. P. Schwan. Determination of the Acoustic Properties of Blood and its Components. J. Acoust. Soc. Amer., 25, 286–289 (1953).Google Scholar
  8. R. C. Chivers and C. R. Hill. Ultrasonic Attenuation in Human Tissue. Ultrasound Med. Biol., 2, 25–29 (1975).CrossRefGoogle Scholar
  9. M. Chvapil. Physiology of Connective Tissue. Butterworth, London (1967).Google Scholar
  10. D. J. Coleman, L. A. Franzen and F. L Lizzi. Spectral Analysis Evaluation of the Eye Involvement of Thyroid Ophthalmopathies. Presented at the First World Federation for Ultrasound in Medicine and Biology, paper no. 930, San Francisco (1976).Google Scholar
  11. J. D. C. Crisp. Properties of Tendon and Skin. In Biomechanics: Its Foundations and Objectives eds., Y. C. Fung, N. Perrone and M. Anliker, pp 141–179, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1972).Google Scholar
  12. H. Dayton. The Physiology of the Eye. Academic Press, New York (1972).Google Scholar
  13. F. Dunn and J. K. Brady. Absorption of Ultrasound in Biological Media. Biophysics, 18, 1128–1132 (1974).Google Scholar
  14. K. T. Dussik and D. J. Fritch. Determination of Sound Attenuation and Sound Velocity in the Structures Constituting the Joints, and of the Ultrasonic Field Distribution within the Joints on Living Tissues and Anatomical Preparations, both in Normal and Pathological Conditions. Progress Report; Project A-454, Public Health Service; April (1955), September (1956).Google Scholar
  15. K. T. Dussik, D. J. Fritch, M. Kyriazidou and R. S...Sear. Measure-ments of Articular Tissues with Ultrasound, J. Phys. Med.;. 37, 160–165 (1958)Google Scholar
  16. S. Fields and F. Dunn. Correlation of Echographic Visualizability of Tissue with Biological Composition and Physiological State. J. Acoust. Soc. Amer, 54, 809–812 (1973).ADSCrossRefGoogle Scholar
  17. K. Friedberg, Diseases of the Heart Third Edition, W. B. Saunders Co., Philadelphia (1966).Google Scholar
  18. K. Fry, G. Kossoff, and H. A. Hindman, Jr. The Potential of Ultrasound Visualization for Detecting the Presence of Abnormal Structures within the Female Breast. In 1972 Ultrasonics Proceedings ed. J. deKierk, pp 25–30, IEEE Catalog No. 72 CHO 708–8SU, New York (1972).Google Scholar
  19. C. Giese. Cell Physiology. W. B. Saunders Co., Philadelphia (1962).Google Scholar
  20. D, E. Goldman and T. F. Hueter. Tabular Data of the Velocity and Absorption of High-Frequency Sound in Mammalian Tissues.i. Acoust. Soc. Amer., 28, 35–37 (1956).Google Scholar
  21. J. F. Greenleaf, S. A. Johnson, R. C. Bahn, W. F. Samayoa and C, R. Hansen. Images of Acoustic Refractive Index and of Attenuation: Relationship to Tissue Types within Excised Female Breast. Presented at First World Federation for Ultrasound in Medicine and Biology, paper no. 1154, San Francisco (1976).Google Scholar
  22. J. F. Greenleaf, S. A. Johnson, W. F. Samayoa and F. A. Duck. Algebraic Reconstruction of Spatial Distribution of Acoustic Velocities in Tissue from their Time-of-Flight Profites. In Acoustical Holography vol 6, ed. N. Booth, pp 71–90, Plenum Press, New York (1975) Google Scholar
  23. M. Greenspan and C. E. Tschiegg. Speed of Sound in Water by a Direct Method. J. Res. Nat’l. Bur. Std., 59, 249 (1957).CrossRefGoogle Scholar
  24. T. H. Rueter. Measurement of Ultrasonic Absorption in Animal,issues and its Dependence on Frequency (in German). Naturwiss., 35, 285287 (1948). Translation in Ultrasonic Biophysics eds.Google Scholar
  25. F. Dunn and W. D. O’Brien, Jr., Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania (1976).Google Scholar
  26. T. F. Hueter. Viscoelastic Losses in Tissue in the Ultrasonic Range. WADC Tech. Report No. 57–706 (1958).Google Scholar
  27. L. Johnston and F. Dunn. Influence of Subarachnoid Structures on Transrnenninges Ultrasonic Propagation. J. Acoust. Soc. Amer, 59, S76 (1976).Google Scholar
  28. L. W. Kessler. VHF Ultrasonic Attenuation in Mammalian Tissue. J. Acoust. Soc. Amer., 53, 1759–1760 (1973).Google Scholar
  29. L. W. Kessler, S. I. Fields and F, Dunn. Acoustic Microscopy of Mammalian Kidney. J. Clinical Ultrasound, 2, 317–320 (1974).Google Scholar
  30. E. Kinsler and A. R. Frey. Fundamentals of Acoustics. Wiley and Sons, New York (1962).Google Scholar
  31. Kossoff, E. K. Fry, and J. Jelins. Average Velocity of Ultra- sound in the Human Female Breast. Je Acoust. Soc’. Amer, 53, 1730.1736’ (1973)•Google Scholar
  32. F. W. Kremkau, C. P. McGraw and R. W. Barnes. Attenuation and Velocity in Normal Brian. J. Acoust. Soc. Amer., 59,:S75 (1’976).Google Scholar
  33. R. A. Lemons.and C. F. Quate. Advances in Mechanically Scanned Acoustic Microscopy. In 1974 Ultrasonics Symposium Proceedings, ed. J. deKlerk, pp 41–44, IEEE Catalog No. 7 CHO 196–1SU, New York (1974).Google Scholar
  34. F. Lizzi, L. Katz, L. St. Louis and D. J. Coleman. Applications of Spectral Analysis in Medical Ultrasonography. Utrasonics, 14, 77–80 (1976).Google Scholar
  35. F. L. Lizzi and M. A. Laviola, Power Spectra Measurements of Ultrasonic Backscattering from Ocular Tissue. In 1975 Ultra sónics Symposium Proceedings ed. J. deKlerk, pp 29–31, IEEE Catalog No. 75 CHO 944–45U, New York (1975).Google Scholar
  36. G. D. Ludwig. The Velocity of Sound Through Tissues and the Acoustic Impedance of Tissues. J. Acoust. Soc. Amer., 22 862–866 (1950).ADSCrossRefGoogle Scholar
  37. M. B.Mathews. Connective Tissue. Macromolecular Structure and Evolution. Springer-Verlag, New York 0975.Google Scholar
  38. V. M. Maynard and S. A. Goss. Personne Communication (1976).Google Scholar
  39. W. Mimbs, D. E. Yuhas, J. G. Miller, A. N. Weiss and B. E. Sobel. Detection of Myocardial infarction In Vitro Based on Altered Attenuation of Ultrasound. Submitted to Circulation Research (1976).Google Scholar
  40. R. A. Mountford and P.N.T. Wells. Ultrasonic Liver Scanning: The Quantitative Analysis of the Normal A-Scan. Phys. Med. Biol., 17, 14–25, 1972.CrossRefGoogle Scholar
  41. J. Namery and P. P. Lele. Ultrasonic Detection of Myocardial Infarction in Dog. In 1972 Ultrasonics Symposium Proceedings ed. J. deKlerk, pp 491–494, IEEE Catalog No. 72 CHO 708–8SU, New York (1972).Google Scholar
  42. H. Neufeld. Canadian J. Research, B15, 132 (1937).Google Scholar
  43. W. D. O’Brien, Jr. and F. Dunn. Ultrasonic Absorption Mechanisms in Aqueous Solutions of Bovine Hemoglobin. J. Phys. Chem., 76, 528–533 (1972).Google Scholar
  44. M. Oka and K. Yosioka. Ultrasonic Absorption of Human Brain Tissue. Presented at First World Federation for Ultrasound in Medicine and Biology, paper no. 1302, San Francisco (1976).Google Scholar
  45. H. Pauly and H. P. Schwan. Mechanism of Absorption of Ultrasound in Liver Tissue. J. Acoust. Soc. Amer., 50, 692–699 (1971).Google Scholar
  46. J. M. M. Pinkerton. The Absorption of Ultrasonic Waves in Liquids and Its Relation to Molecular Constitutions. Proc. Phys. Soc. London, B62, 129 (1949).ADSCrossRefGoogle Scholar
  47. H. T. Robb-Smith. Normal Morphology and Morphogenesis of Connective Tissue. In Connective Tissue in Health and Disease ed. G. Asboe-Hansen, pp 15–30, Philosophical Library, Denmark (1954).Google Scholar
  48. T. C. Ruch and H. D. Patton. Physiology and Biophysics. W. B. Saunders Co., Philadelphia (1966)Google Scholar
  49. Schneiderman and R. S. Hosek. An Overview-The Nervous System. In Biological Foundations of Biomedical Engineering ed. J Kline, pp,415–438, Little, Brown and Co!, Boston (1976)Google Scholar
  50. R. van Heyningen. The Lens. In The Eye; Vegetative Physiology and Biochemistry ed. H. Dawson, pp 213–2371 Academic Press, New York (1962).Google Scholar
  51. E. P M. van`Venrooij. Measurement of Ultrasound Velocity in Human Tissue. Ultrasonics,’9, 240–242 (1971).Google Scholar
  52. B. K. Watt and A. L. Merrill. Composition of Foods. Agriculture Handbook No, 8, U. S. Department of Agric.ultrue, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C:, December (1963).Google Scholar
  53. White, P. Handler and E. L. Smith. Principles of Biochemistry. McGraw Hill Book Co., New York 0968).Google Scholar
  54. J. Wild and J. M. Reid. The Effects of Biological Tissues on 15-mc Pulsed Ultrasound, J. Acoust. Soc, Amer., 25, 270–280 (1953).ADSCrossRefGoogle Scholar
  55. Wild and J. M. Reid. Echographic Visualization of Lesions of the Living Intact Human Breast. Cancer Research, 14, 277–283 (1954).Google Scholar
  56. W. F. Windle. Textbook on Histology. McGraw Hi j 1, New York (197.6).Google Scholar
  57. J. W. Wladimiroff, I. L. Craft and D. G. Talbert. In vitro Measurements of Sound Velocity in Human Fetal Brain Tissue. Ultrasound Med. Biol., ?, 377382 (1975)•Google Scholar
  58. M. B. Wolf. The Body Fluids in Biological Foundations of Biomedical Engineering ed. J. Kline, pp 391–411, Little, Brown and Co., Boston (1976).Google Scholar
  59. R. C. Wolf and J. H. Leathern. Hormonal and Nutritional Influences on the Biochemical Composition of the Rat Testis. Endocrinology, 57, 286–290 (1955).CrossRefGoogle Scholar
  60. Yamkawa, A. Yoskioka, K. Shimizu, T. Moriya, S. Higashi, T. Sakamaki, K. Sawada, K. Kuramochi and H. Okuda. Studies on the Acoustic Impedance of Experimentally Illed Rats. Jap. Med, Ultrasonics, 39–40 (1964). Reported in Field and Dunn (1973).Google Scholar
  61. C. E..Yúhas, J. W. Mimbs, J. G. Miller, A. N. Weiss and B. E. Sobel. Correlation between Changes in the Frequency Dependence of Ultrasonic Attenuation and Regional CPK Depletion Associated with Myocardial Infarction. Presented at First World Federation of Ultrasound in Medicine and Biology, paper no. 1123, San Francisco (1976).Google Scholar
  62. R. Zana and J. Lang. Interaction of Ultrasound and Amniotic Liquid. Ultrasound Med. Biol, 1, 253–258 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • W. D. O’BrienJr.
    • 1
  1. 1.Department of Electrical EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations