Monolithic Mosaic Transducer Utilizing Trapped Energy Modes

  • H. F. Tiersten
  • J. F. McDonald
  • M. F. Tse
  • P. Das


A major difficulty In the fabrication of a large mosaic transducer is the achievement of adequate acoustic isolation of the small transducer elements making up the array. In order to obtain the isolation some workers have combined completely separate individual transducer elements [l] while others have used a large piezoelectric plate with grooves [2, 3]. The latter procedure is somewhat less cumbersome but still difficult for very small element sizes. Recently attention has been directed towards acoustic isolation schemes which do not require grooves. Some of these techniques involve matched terminator backing for the plate [k]. In this way the internal plate reflections that produce coupling are reduced.


Dispersion Curve Interference Pattern Piezoelectric Plate Backing Material Electroded Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.G. Prokhorov, „Piezoelectric Matrices for the Reception of Acoustic Images and Holograms,“ Sov. Phys. Acoust., Yol. 18 (3), Jan.-March 1973, pp. U08 - U10.Google Scholar
  2. 2.
    M.G. Marginness, J.D. Plummer, and J.D. Meindl, „An Acoustic Image Sensor Using a Transmit-Receive Array,“ in Acoustical Holography, (R.G. Green, Editor) Vol. 5, Plenum Press, New York, 1973, pp. 619 - 631.Google Scholar
  3. 3.
    N. Takagi, T. Kawaghima, T. Ogura and T. Yamada, „Solid-State Acoustic Image Sensor,“ in Acoustical Holography, ( G. Wade, Editor) Vol. b, Plenum Press, New York, 1972, pp. 215 - 236.CrossRefGoogle Scholar
  4. 4.
    B.A. Auld, C. DeSilets and G.S. Kino, „A New Acoustic Array for Acoustic Imaging“ Ultrasonics Symposium Proceedings, 197, pp. 21 - 27.Google Scholar
  5. 5.
    W. Schockley, D.R. Curran and D.J. Koneval,- „Energy Trapping and Related Studies of Multiple Electrode Filter Crystals,“ Proc. 17th Annual.Symposium on Frequency Control, 88 (1963). W. Schockley, D.R. Curran and D. J. Koneval, „Trapped Energy Modes In Quartz Crystal Filters,“ J. Acoust. Soc. Am., hi, 981 (1967).Google Scholar
  6. 6.
    M. Onoe and H. Jumonji, „Analysis of Piezoelectric Resonators Vibrating In Trapped Energy Modes,“ Electronics and Comm. Eng. (Japan), 8b (1965).Google Scholar
  7. M. Onoe, H. Jumonji and N. Kobori, „High Frequency Crystal Filters Employing Multiple Mode Resonators Vibrating in Trapped Energy Modes,“ Proc. 20th Annual Symposium on Frequency Control, 266 (1966).Google Scholar
  8. 7.
    H.F. Tiersten, „Linear Piezoelectric Plate Vibrations,“ Plenum Press, New York, 1969.Google Scholar
  9. 8.
    R. Holland and E.P. Eer Nisse, „Design of Resonant Piezoelectric Devices,“ MIT Press, No. 56, Cambridge, Mass., 1969,Google Scholar
  10. 9.
    R.D. Mindlin, „High Frequency Vibrations of Crystal Plates,“ Q. Appl. Math., 19, 51 (1961).MathSciNetzbMATHGoogle Scholar
  11. 10.
    R.D. Mindlin and M.A. Medick, „Extensional Vibrations of Piezoelectric Crystal Plates,“ J. App. Mech. Trans. ASME, 26 pp. 561 - 569, Dec. 1959.MathSciNetGoogle Scholar
  12. 11.
    H.F. Tiersten, „Analysis of Intermodulation in Thickness-Shear and Trapped Energy Resonators,“ J. Acoust. Soc. Am., 5T_, 667 (1975).Google Scholar
  13. 12.
    H.F. Tiersten, „Analysis of Trapped Energy Resonators Operating in Overtones of Coupled Thickness-Shear and Thickness-Twist,“ J. Acoust. Soc. Am., 59, 879 (1976).ADSCrossRefzbMATHGoogle Scholar
  14. 13.
    G. Weinreich, „Solids,“ J. Wiley, New York, 1965, Chapter 1.Google Scholar
  15. 14.
    Reference 7, Chapter 7, Equations (7.29).Google Scholar
  16. 15.
    H.F. Tiersten, „Wave Propagation in an Infinite Piezoelectric Plate, J. Acoustic Soc. Am. 35., 1963, p. 23.Google Scholar
  17. 16.
    R.D. Mindlin, „Mathematical Theory of Vibrations and Elastic Plates,“ in Proc. 11th Annual Symposium on Frequency Control, U.S. Army Signal Engineering Laboratories, Fort Monmouth, N.J., 1957, P. 1-0.Google Scholar
  18. 17.
    Reference 7, Eq. (6.4U)Google Scholar
  19. 18.
    H.F. Tiersten, „Thickness Vibrations of Piezoelectric Plates,“ J. Acoust. Soc. Am., 35., 1963, p. 53.Google Scholar
  20. 19.
    M. Onoe, H.F. Tiersten and A.H. Meitzler, „Shift In the Location of Resonant Frequencies Causes by Large Electro- Mechanical Coupling in Thickness Mode Resonators,“ J. Acoust. Soc. Am., 35, 1963, p. 36.ADSCrossRefGoogle Scholar
  21. 20.
    L.A. Harris, „Element Directivity in Ultrasonic Imaging Systems,“ IEEE. Trans, on Sonics and Ultrasonics, SU-22 (5) Sept. 1975, PP. 336-3U0.Google Scholar
  22. 21.
    J.W. Goodman, „Introduction to Fourier Optics“, McGraw-Hill, New York, 1968.Google Scholar
  23. 22.
    Yariv, „Introduction to Optical Electronics,“ Holt, RInhardt and Winston, New York, 1971, Chapter 12.Google Scholar
  24. 23.
    M.V. Berry, „The Diffraction of Light by Ultra Sound,“ Academic Press, New York, 1966.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • H. F. Tiersten
    • 1
  • J. F. McDonald
    • 1
  • M. F. Tse
    • 1
  • P. Das
    • 1
  1. 1.Rensselaer Polytechnic Institute TroyNew YorkUSA

Personalised recommendations