Classical Electron Models

  • Philip Pearle

Abstract

An electron, in an Abraham-Lorentz-Poincaré model, is a uniformly charged spherical shell (Abraham, 1903, 1904; Lorentz, 1952; Poincaré, 1905, 1906). A non-electromagnetic (“mechanical”) attractive force is present to keep the electron from puffing up like a balloon due to the mutual repulsion of its charged parts. In this chapter we will study the dynamics of A-L-P electron models* with rigid or flexible shell surfaces. Hereafter, an A-L-P electron model will often be simply called “the electron.”

Keywords

Electron Model Lorentz Frame Mechanical Mass Runaway Behavior Point Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggested Reading

Key Articles and Reviews

  1. Abraham, M., 1903, Ann. Physik 10, 105. Abraham, M., 1904, Phys. Zeitschrift 5, 576. Barut, A. 0., 1974, Phys. Rev. D 10, 3335.Google Scholar
  2. Barut, A. O., and A. J. Bracken, 1981, Phys. Rev. D 23, 2454.Google Scholar
  3. Bohm, D., and M. Weinstein, 1948, Phys. Rev. 74, 1789.Google Scholar
  4. Bonner, W., 1974, Proc. R. Soc. (London) A 337, 591.ADSCrossRefGoogle Scholar
  5. Born, M., 1909, Ann. Phys. Leipzig 30, 1.Google Scholar
  6. Caldirola, P., 1956, Nuovo Cimento 3, Suppl. 2, 297.MathSciNetGoogle Scholar
  7. Cloetens, W., 1968, Simon Stevin (Netherlands) 41, 260.Google Scholar
  8. Cohn, J., 1975, Nuovo Cimento 26 B, 47.Google Scholar
  9. Cohn, J., 1976, Phys. Rev. D 14, 3371.Google Scholar
  10. Coleman, S., 1960, Classical Electron Theory from a Modern Standpoint (Rand Report) is published for the first time in this volume.Google Scholar
  11. Coleman, S., 1975, Phys. Rev. D 11, 2088 discusses a quantum soliton.Google Scholar
  12. Dirac, P. A. M., 1938, Proc. R. Soc. (London) A 167, 148.ADSCrossRefGoogle Scholar
  13. Dirac, P. A. M., 1962, Proc. R. Soc. (London) 268, 57.MathSciNetADSMATHCrossRefGoogle Scholar
  14. Driver, R., 1969, Phys. Rev. 178, 2051 has considered the case where the rod is parallel to the z-axis.Google Scholar
  15. Eliezer, C. J., 1946, Proc. Camb. Phil. Soc. 42, 278.MathSciNetADSMATHCrossRefGoogle Scholar
  16. Eliezer, C. J., 1948, Proc. R. Soc. (London) A 194, 543 (and other references therein). Erber, T., 1961, Fortschritte der Physik 9, 343.Google Scholar
  17. Fermi, E., 1922a, Physik Z. 23, 340.Google Scholar
  18. Fermi, E., 1922b, Atti Acad. Nazl. Lincei 31, 184.Google Scholar
  19. Fermi, E., 1922c, Atti Acad. Nazl. Lincei 31, 306.Google Scholar
  20. Goedecke, G., 1964, Phys. Rev. 135, B281.MathSciNetGoogle Scholar
  21. Goldhaber, A., 1976, Phys. Rev. Lett. 36, 1122. See also the two preceeding articles in this journal.Google Scholar
  22. Horwitz, G., and J. Katz, 1971a, Nuovo Cimento 3 B, 245.Google Scholar
  23. Horwitz, G., and J. Katz, 1971b, Nuovo Cimento 513, 59.Google Scholar
  24. Huang, K., 1952, Am. J. Phys. 20, 479.ADSMATHCrossRefGoogle Scholar
  25. Huschilt, J., and W. Baylis, 1974, Phys. Rev. D 8, 2479 have pointed out that when the equation of motion of Mo and Papas (1971) is applied to a two particle scattering problem, it can give rise to unphysical behavior.Google Scholar
  26. Huschilt, J., and W. Baylis, 1976a, Phys. Rev. D 13, 3237.MathSciNetADSCrossRefGoogle Scholar
  27. Huschilt, J., and W. Baylis, 1976b, Phys. Rev. D 13, 3262.MathSciNetADSCrossRefGoogle Scholar
  28. Isham, C., A. Salam, and J. Strathdee, 1971, Phys. Rev. D 3, 1805.Google Scholar
  29. Johnson, K., 1975, Acta Physica Polonica B 6, 865.Google Scholar
  30. Kaup, D., 1966, Phys. Rev. 152, 1130.Google Scholar
  31. Kwal, B., 1949, J. Phys. Radium 10, 103.Google Scholar
  32. Levine, H., E. Moniz, and D. Sharp, 1977, Am. J. Phys. 45, 75.Google Scholar
  33. McManus, H., 1948, Proc. R. Soc. (London) A 195, 323.MathSciNetADSMATHCrossRefGoogle Scholar
  34. Misner, C., and J. Wheeler, 1957, Ann. of Phys. 2, 525.Google Scholar
  35. Mo, T., and C. Papas, 1971, Phys. Rev. D 4, 3566.ADSCrossRefGoogle Scholar
  36. Moniz, E., and D. Sharp, 1977, Phys. Rev. D 15, 2850.Google Scholar
  37. Nodvick, J. S., 1964, Ann. Physik (New York) 28, 225.Google Scholar
  38. Page, L., 1918, Phys. Rev. 11, 376. Unfortunately, Page’s Eq. (4.2) which expresses this result contains an error in the last two lines.Google Scholar
  39. Pais, A., 1972, “The Early History of the Theory of the Electron: 1897–1947,” in Aspects of Quantum Theory, edited by A. Salam and E. Wigner ( Cambridge University Press, London ), p. 79.Google Scholar
  40. Pearle, P., 1977, Found. Phys. 7, 931.Google Scholar
  41. Pearle, P., 1978, Found. Phys. 8, 879.Google Scholar
  42. Plass, G., 161, Rev. Mod. Phys.3337.Google Scholar
  43. Poincaré, H., 1905, Comptes Rendue 140, 1504.MATHGoogle Scholar
  44. Poincaré, H., 1906, Rendiconti del Circolo Matematico di Palermo 21, 129. An English translation of this paper exists with modernized notation [see Schwartz (1971), (1972a, b)].Google Scholar
  45. Rohrlich, F., 1960, Am. J. Phys. 28, 639.Google Scholar
  46. Rosen, G., 1971, Phys. Rev. D 4, 275.Google Scholar
  47. Scherk, J., 1975, Revs. Mod. Phys. 47, 123.Google Scholar
  48. Schott, G. A., 1915, Philos. Mag. 29, 49.Google Scholar
  49. Schroedinger, E., 1930, Sizzungsber. Preuss. Akad. Wiss. Phys.-Math. K1. X, 418. Schwartz, H. M., 1971, Am. J. Phys. 39, 1287.Google Scholar
  50. Schwartz, H. M., 1972a, Am. J. Phys. 40, 862.Google Scholar
  51. Schwartz, H. M., 1972b, Am. J. Phys. 40, 1282.Google Scholar
  52. Shen, C. S., 1972, Phys. Rev. D 6, 2736.Google Scholar
  53. Shen, C. S., 1978, Phys. Rev. E 17, 434.Google Scholar
  54. Sommerfeld, A., 1904a, b, 1905, Akademie Der Wissenschaften (Göttingen), Mathematisch-Google Scholar
  55. Physikalische Klasse, Nachrichten: paper I, 99; paper II, 363 (see Eq. 54); paper IIIGoogle Scholar
  56. 201.
    For a paper in English touching on this series, see Sommerfeld (1904c). Sommerfeld, A., 1904c, Akademie Van Wetenschappen ( Amsterdam ), Afdeeling Natuur-kunde 1, 346.Google Scholar
  57. Sorg, M., 1974, Z. Naturforsch. 29a 1671.MathSciNetADSGoogle Scholar
  58. Synge, J., 1940, Proc. R. Soc. (London) 177 A, 118.Google Scholar
  59. Teitelboim, C., 1970, Phys. Rev. D 1, 1572.Google Scholar
  60. Teitelboim, C., D. Villaroel, and Ch. G. van Weert, 1980, Rivista del Nuovo Cimento 3, 1. Weisskopf, V., 1939, Phys. Rev. 56, 72.Google Scholar
  61. Wildermuth, K., 1955, Z. Naturforsch. 10 A, 450.Google Scholar
  62. Wilson, W., 1936, Proc. R. Soc. (London) 48, 736.ADSCrossRefGoogle Scholar

Authored Books

  1. Bellman, R. and K. Cooke, 1963, Differential-Difference Equations ( Academic Press, New York), chaps. 3, 4.Google Scholar
  2. Lorentz, H. A., 1952, The Theory of Electrons (second edition, Dover Publications, New York). The first edition, published in 1909, was based upon lectures delivered in 1906 at Columbia University. See sections 26–37, 178–183; notes 18, 77, 79, 80.Google Scholar
  3. Pauli, W., 1958, Theory of Relativity ( Pergamon Press, London), sec. 45.MATHGoogle Scholar
  4. Rohrlich, F., 1965, Classical Charged Particles (Addison Wesley, Reading, Mass.). Because of its clarity and authority, this book has become a standard reference (e.g., for equations and notation) for people working in this field.Google Scholar
  5. Synge, J., 1972, in Magic Without Magic (W. H. Freeman and Co., San Francisco), p. 117.Google Scholar
  6. Whitham, G., 1974, Linear and Nonlinear Waves ( John Wiley and Sons, New York) discusses classical solitons (solitary waves).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Philip Pearle

There are no affiliations available

Personalised recommendations