Skip to main content

Classical Electron Models

  • Chapter
Electromagnetism

Abstract

An electron, in an Abraham-Lorentz-Poincaré model, is a uniformly charged spherical shell (Abraham, 1903, 1904; Lorentz, 1952; Poincaré, 1905, 1906). A non-electromagnetic (“mechanical”) attractive force is present to keep the electron from puffing up like a balloon due to the mutual repulsion of its charged parts. In this chapter we will study the dynamics of A-L-P electron models* with rigid or flexible shell surfaces. Hereafter, an A-L-P electron model will often be simply called “the electron.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggested Reading

Key Articles and Reviews

  1. Abraham, M., 1903, Ann. Physik 10, 105. Abraham, M., 1904, Phys. Zeitschrift 5, 576. Barut, A. 0., 1974, Phys. Rev. D 10, 3335.

    Google Scholar 

  2. Barut, A. O., and A. J. Bracken, 1981, Phys. Rev. D 23, 2454.

    Google Scholar 

  3. Bohm, D., and M. Weinstein, 1948, Phys. Rev. 74, 1789.

    Google Scholar 

  4. Bonner, W., 1974, Proc. R. Soc. (London) A 337, 591.

    Article  ADS  Google Scholar 

  5. Born, M., 1909, Ann. Phys. Leipzig 30, 1.

    Google Scholar 

  6. Caldirola, P., 1956, Nuovo Cimento 3, Suppl. 2, 297.

    MathSciNet  Google Scholar 

  7. Cloetens, W., 1968, Simon Stevin (Netherlands) 41, 260.

    Google Scholar 

  8. Cohn, J., 1975, Nuovo Cimento 26 B, 47.

    Google Scholar 

  9. Cohn, J., 1976, Phys. Rev. D 14, 3371.

    Google Scholar 

  10. Coleman, S., 1960, Classical Electron Theory from a Modern Standpoint (Rand Report) is published for the first time in this volume.

    Google Scholar 

  11. Coleman, S., 1975, Phys. Rev. D 11, 2088 discusses a quantum soliton.

    Google Scholar 

  12. Dirac, P. A. M., 1938, Proc. R. Soc. (London) A 167, 148.

    Article  ADS  Google Scholar 

  13. Dirac, P. A. M., 1962, Proc. R. Soc. (London) 268, 57.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Driver, R., 1969, Phys. Rev. 178, 2051 has considered the case where the rod is parallel to the z-axis.

    Google Scholar 

  15. Eliezer, C. J., 1946, Proc. Camb. Phil. Soc. 42, 278.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Eliezer, C. J., 1948, Proc. R. Soc. (London) A 194, 543 (and other references therein). Erber, T., 1961, Fortschritte der Physik 9, 343.

    Google Scholar 

  17. Fermi, E., 1922a, Physik Z. 23, 340.

    Google Scholar 

  18. Fermi, E., 1922b, Atti Acad. Nazl. Lincei 31, 184.

    Google Scholar 

  19. Fermi, E., 1922c, Atti Acad. Nazl. Lincei 31, 306.

    Google Scholar 

  20. Goedecke, G., 1964, Phys. Rev. 135, B281.

    MathSciNet  Google Scholar 

  21. Goldhaber, A., 1976, Phys. Rev. Lett. 36, 1122. See also the two preceeding articles in this journal.

    Google Scholar 

  22. Horwitz, G., and J. Katz, 1971a, Nuovo Cimento 3 B, 245.

    Google Scholar 

  23. Horwitz, G., and J. Katz, 1971b, Nuovo Cimento 513, 59.

    Google Scholar 

  24. Huang, K., 1952, Am. J. Phys. 20, 479.

    Article  ADS  MATH  Google Scholar 

  25. Huschilt, J., and W. Baylis, 1974, Phys. Rev. D 8, 2479 have pointed out that when the equation of motion of Mo and Papas (1971) is applied to a two particle scattering problem, it can give rise to unphysical behavior.

    Google Scholar 

  26. Huschilt, J., and W. Baylis, 1976a, Phys. Rev. D 13, 3237.

    Article  MathSciNet  ADS  Google Scholar 

  27. Huschilt, J., and W. Baylis, 1976b, Phys. Rev. D 13, 3262.

    Article  MathSciNet  ADS  Google Scholar 

  28. Isham, C., A. Salam, and J. Strathdee, 1971, Phys. Rev. D 3, 1805.

    Google Scholar 

  29. Johnson, K., 1975, Acta Physica Polonica B 6, 865.

    Google Scholar 

  30. Kaup, D., 1966, Phys. Rev. 152, 1130.

    Google Scholar 

  31. Kwal, B., 1949, J. Phys. Radium 10, 103.

    Google Scholar 

  32. Levine, H., E. Moniz, and D. Sharp, 1977, Am. J. Phys. 45, 75.

    Google Scholar 

  33. McManus, H., 1948, Proc. R. Soc. (London) A 195, 323.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Misner, C., and J. Wheeler, 1957, Ann. of Phys. 2, 525.

    Google Scholar 

  35. Mo, T., and C. Papas, 1971, Phys. Rev. D 4, 3566.

    Article  ADS  Google Scholar 

  36. Moniz, E., and D. Sharp, 1977, Phys. Rev. D 15, 2850.

    Google Scholar 

  37. Nodvick, J. S., 1964, Ann. Physik (New York) 28, 225.

    Google Scholar 

  38. Page, L., 1918, Phys. Rev. 11, 376. Unfortunately, Page’s Eq. (4.2) which expresses this result contains an error in the last two lines.

    Google Scholar 

  39. Pais, A., 1972, “The Early History of the Theory of the Electron: 1897–1947,” in Aspects of Quantum Theory, edited by A. Salam and E. Wigner ( Cambridge University Press, London ), p. 79.

    Google Scholar 

  40. Pearle, P., 1977, Found. Phys. 7, 931.

    Google Scholar 

  41. Pearle, P., 1978, Found. Phys. 8, 879.

    Google Scholar 

  42. Plass, G., 161, Rev. Mod. Phys.3337.

    Google Scholar 

  43. Poincaré, H., 1905, Comptes Rendue 140, 1504.

    MATH  Google Scholar 

  44. Poincaré, H., 1906, Rendiconti del Circolo Matematico di Palermo 21, 129. An English translation of this paper exists with modernized notation [see Schwartz (1971), (1972a, b)].

    Google Scholar 

  45. Rohrlich, F., 1960, Am. J. Phys. 28, 639.

    Google Scholar 

  46. Rosen, G., 1971, Phys. Rev. D 4, 275.

    Google Scholar 

  47. Scherk, J., 1975, Revs. Mod. Phys. 47, 123.

    Google Scholar 

  48. Schott, G. A., 1915, Philos. Mag. 29, 49.

    Google Scholar 

  49. Schroedinger, E., 1930, Sizzungsber. Preuss. Akad. Wiss. Phys.-Math. K1. X, 418. Schwartz, H. M., 1971, Am. J. Phys. 39, 1287.

    Google Scholar 

  50. Schwartz, H. M., 1972a, Am. J. Phys. 40, 862.

    Google Scholar 

  51. Schwartz, H. M., 1972b, Am. J. Phys. 40, 1282.

    Google Scholar 

  52. Shen, C. S., 1972, Phys. Rev. D 6, 2736.

    Google Scholar 

  53. Shen, C. S., 1978, Phys. Rev. E 17, 434.

    Google Scholar 

  54. Sommerfeld, A., 1904a, b, 1905, Akademie Der Wissenschaften (Göttingen), Mathematisch-

    Google Scholar 

  55. Physikalische Klasse, Nachrichten: paper I, 99; paper II, 363 (see Eq. 54); paper III

    Google Scholar 

  56. For a paper in English touching on this series, see Sommerfeld (1904c). Sommerfeld, A., 1904c, Akademie Van Wetenschappen ( Amsterdam ), Afdeeling Natuur-kunde 1, 346.

    Google Scholar 

  57. Sorg, M., 1974, Z. Naturforsch. 29a 1671.

    MathSciNet  ADS  Google Scholar 

  58. Synge, J., 1940, Proc. R. Soc. (London) 177 A, 118.

    Google Scholar 

  59. Teitelboim, C., 1970, Phys. Rev. D 1, 1572.

    Google Scholar 

  60. Teitelboim, C., D. Villaroel, and Ch. G. van Weert, 1980, Rivista del Nuovo Cimento 3, 1. Weisskopf, V., 1939, Phys. Rev. 56, 72.

    Google Scholar 

  61. Wildermuth, K., 1955, Z. Naturforsch. 10 A, 450.

    Google Scholar 

  62. Wilson, W., 1936, Proc. R. Soc. (London) 48, 736.

    Article  ADS  Google Scholar 

Authored Books

  • Bellman, R. and K. Cooke, 1963, Differential-Difference Equations ( Academic Press, New York), chaps. 3, 4.

    Google Scholar 

  • Lorentz, H. A., 1952, The Theory of Electrons (second edition, Dover Publications, New York). The first edition, published in 1909, was based upon lectures delivered in 1906 at Columbia University. See sections 26–37, 178–183; notes 18, 77, 79, 80.

    Google Scholar 

  • Pauli, W., 1958, Theory of Relativity ( Pergamon Press, London), sec. 45.

    MATH  Google Scholar 

  • Rohrlich, F., 1965, Classical Charged Particles (Addison Wesley, Reading, Mass.). Because of its clarity and authority, this book has become a standard reference (e.g., for equations and notation) for people working in this field.

    Google Scholar 

  • Synge, J., 1972, in Magic Without Magic (W. H. Freeman and Co., San Francisco), p. 117.

    Google Scholar 

  • Whitham, G., 1974, Linear and Nonlinear Waves ( John Wiley and Sons, New York) discusses classical solitons (solitary waves).

    Google Scholar 

Download references

Authors

Editor information

Doris Teplitz

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pearle, P. (1982). Classical Electron Models. In: Teplitz, D. (eds) Electromagnetism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0650-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0650-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0652-9

  • Online ISBN: 978-1-4757-0650-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics