Advertisement

Solitons, Plasma Waves, and Laser Pulses

  • Stephen Maxon

Abstract

The soliton is a pulse-like nonlinear wave which emerges from a collision with another soliton with its shape and speed preserved. This description, taken from the excellent review given by Scott, Chu, and McLaughlin (1973), aptly characterizes planar solitons. We shall see that solitons also exist in two and three dimensions, by extending the above characterization appropriately.

Keywords

Soliton Solution Plasma Wave Nonlinear Schrodinger Equation Breather Solution Single Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggested Reading

Key Articles, Reviews and Conference Proceedings

  1. Ablowitz, M. J., D. J. Kaup, A. C. Newell, and H. Segur, 1973, Phys. Rev. Lett. 30, 1262.MathSciNetCrossRefADSGoogle Scholar
  2. Ablowitz, M. J., D. J.Kaup, and A. C. Newell, 1974, J. Math. Phys. 15, 1852.CrossRefADSGoogle Scholar
  3. Asano, N., T. Taniuti, and N. Yajima, 1969, J. Math. Phys. 10, 2020. Note that the results given in this paper for P and Q are different than equations (3.47)–(3.49) because our results are for adiabatic electrons while Asano et al. assume isothermal electrons.Google Scholar
  4. Barone, A., F. Esposita, C. J. Magee, and A. C. Scott, 1971, Riv. Nuovo Cimento 1, 227.CrossRefGoogle Scholar
  5. Benjamin, T. B., 1972, Proc. R. Soc. A 328, 153.MathSciNetCrossRefADSGoogle Scholar
  6. Berezin, Y. A., and V. I. Karpman, 1967, Soviet Phys. JETP 24, 1049.ADSGoogle Scholar
  7. Bondeson, A., 1980, Phys. Fluid 23, 746.MathSciNetzbMATHCrossRefADSGoogle Scholar
  8. Colagero, F., and A. Degasperis, 1978, Lett. Nuovo Cimento 23, 150.MathSciNetCrossRefGoogle Scholar
  9. Cumberbatch, E., 1978, Phys. Fluids 2, 374.CrossRefADSGoogle Scholar
  10. Dashen, R. F., B. Hasslacher, and A. Nevenu, 1974, Phys. Rev. D 10, 4114.CrossRefADSGoogle Scholar
  11. Folkes, P. A., H. Ikezi, and R. Davis, 1980, Phys. Rev. Lett. 45, 902.CrossRefADSGoogle Scholar
  12. Gardner, C. S., J. M. Greene, M. D. Kruskal, and R. M. Miura, 1967, Phys. Rev. Lett. 19, 1095.zbMATHCrossRefADSGoogle Scholar
  13. Gibbs, H. M., and R. E. Slusher, 1970, Phys. Rev. Lett. 24, 638.CrossRefADSGoogle Scholar
  14. Goldstone, J., and R. Jackiw, 1975, Phys. Rev. D 11, 1486.CrossRefADSGoogle Scholar
  15. Greene, J. M., M. D. Kruskal, and R. M. Miura, 1974, Commun. Pure Appl. Math. 27, 97.MathSciNetzbMATHGoogle Scholar
  16. Hasegawa, A., and F. Tappert, 1973a, Appl. Phys. Lett. 23, 142.CrossRefADSGoogle Scholar
  17. Hasegawa, A., and F. Tappert, 1973b, Appl. Phys. Lett. 23, 171.CrossRefADSGoogle Scholar
  18. Hershkowitz, N., and T. Romesser, 1974, Phys. Rev. Lett. 32, 581.CrossRefADSGoogle Scholar
  19. Ikezi, H., 1973, Phys. Fluids 16, 1668.CrossRefADSGoogle Scholar
  20. Jeffrey, A., and K. Kakutani, 1972, SIAM Rev. 14, 582. This is an excellent discussion of the Burgers shock wave and the KdV solitary wave.Google Scholar
  21. Kakutani, T., and N. Sugimoto, 1974, Phys. Fluids 17, 1617.MathSciNetCrossRefADSGoogle Scholar
  22. Karpman, V. I., J. P. Lynov, P. Michelsen, H. L. Pecseli, J. J. Rasmussen, and V. A. Turikov, 1980, Phys. Fluids 23, 1782.MathSciNetzbMATHCrossRefADSGoogle Scholar
  23. Kaup, D., 1981, Physica D 2, 389.MathSciNetzbMATHCrossRefADSGoogle Scholar
  24. Kay, I., and H. E. Moses, 1956, J. Appl. Phys. 27, 1503.zbMATHCrossRefADSGoogle Scholar
  25. Korteweg, D. J., and G. deVries, 1895, Phil. Mag. 39, 422.zbMATHGoogle Scholar
  26. Laedke, E. W., and K. H. Spatschek, 1979, J. Plasma Physics 22, 477.CrossRefADSGoogle Scholar
  27. Lamb, G. L., Jr., 1971, Rev. Mod. Phys. 43, 99.MathSciNetCrossRefADSGoogle Scholar
  28. Lamb, G. L., Jr., 1973, Phys. Rev. Lett. 31, 196.CrossRefADSGoogle Scholar
  29. Lax, P. D., 1968, Commun. Pure Appl. Math. 21, 467.MathSciNetzbMATHGoogle Scholar
  30. McCall, S. L., and E. L. Hahn, 1967, Phys. Rev. Lett. 18, 908.CrossRefADSGoogle Scholar
  31. McCall, S. L., and E. L. Hahn, 1969, Phys. Rev. 183, 457.CrossRefADSGoogle Scholar
  32. Makhankov, V. G., 1978, Physics Report (Section C of Phys. Lett.) 35, No. 1, 1.MathSciNetGoogle Scholar
  33. Maxon, S., and J. Viecelli, 1974a, Phys. Fluids 17, 1614.CrossRefADSGoogle Scholar
  34. Maxon, S., and J. Viecelli, 1974b, Phys. Rev. Lett. 32, 4.CrossRefADSGoogle Scholar
  35. Miura, R. M., C. S. Gardner, and M. D. Kruskal, 1968, J. Math. Phys. 9, 1204.MathSciNetzbMATHCrossRefADSGoogle Scholar
  36. Patel, C. K. N., and R. E. Slusher, 1967, Phys. Rev. Lett. 19, 1019.CrossRefADSGoogle Scholar
  37. Rubinstein, J., 1970, J. Math. Phys. 11, 258.CrossRefADSGoogle Scholar
  38. Russell, J. Scott, 1845, Report on Waves, in Report to the Fourteenth Meeting (1844) of British Assn. for Advancement of Science (London), p. 311.Google Scholar
  39. Scott, A. C., F. Y. F. Chu, and D. W. McLaughlin, 1973, Proc. IEEE 61, 1443. This is an excellent review article on solitons and is highly recommended to the reader.Google Scholar
  40. Tsytovich, V. N., 1976, Physica C 82, 141.CrossRefGoogle Scholar
  41. Washimi, H., and T. Taniuti, 1966, Phys. Rev. Lett. 17, 996.CrossRefADSGoogle Scholar
  42. Wong, J., J. C. Garrison, and T. H. Einwohner, 1976, Phys. Rev. A 13, 674.CrossRefADSGoogle Scholar
  43. Zabusky, N. J., and M. D. Kruskal, 1965, Phys. Rev. Lett. 15, 240.zbMATHCrossRefADSGoogle Scholar
  44. Zabusky, N. J., 1968, Phys. Rev. 168, 124.CrossRefADSGoogle Scholar
  45. Ze F., N. Hershkowitz, C. Chang, and K. E. Lonngren, 1979, Phys. Rev. Lett. 42, 1747.CrossRefADSGoogle Scholar

Authored Books

  1. Bogoliubov, N. N., and Y. A. Mitropolsky, 1961, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach Science Publishers, New York), Chap. I. A recent application of these methods to the laser excitation of atoms and molecules can be found in Wong et al. (1976).Google Scholar
  2. Jackson, J. D., 1975, Classical Electrodynamics, 2nd ed. ( J. Wiley, New York). See in particular Section 10. 8.Google Scholar

Edited Volumes

  1. Bishop, A. R., and T. Schneider, editors, 1978, Solitons and Condensed Matter Physics ( Springer-Verlag, New York ).zbMATHGoogle Scholar
  2. Bullough, R. K., and P. J. Caudrey, editors, 1980, Solitons (Springer-Verlag, New York).Google Scholar
  3. Lonngren, K., and A. C. Scott, Editors, 1978, Solitons in Action ( Academic Press, New York ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Stephen Maxon

There are no affiliations available

Personalised recommendations