Chemistry of the Bile Acids

  • David Kritchevsky
  • Padmanabhan P. Nair

Abstract

Investigations into the nature of the compounds present in bile date back to the first decade of the nineteenth century (l, 2) and possibly earlier. The early investigators (1-3) found that by treating bile with lead acetate they could separate two distinct substances, which they designated “bile resin” and “picromel.” Berzelius (2, 4, 5) obtained similar fractions, which he identified as “choleic acid” and “bilin.” Demarcay (6) was the first to recognize the uniformity of the solid matter in bile. The presence of nitrogen and sulfur was noted by several early workers but they were probably thought to be integral parts of the isolated acids. Demarcay found that treatment of the bile solid with alkali yielded a nitrogen-free acid, which he first called “cholic” acid, but since Gmelin (3) had applied this name to what we now know as glycocholic acid, Demarcay changed the name to “cholinic” acid. The name “cholic” acid was reapplied to this material toward the end of the nineteenth century. The isolation of nitrogen-free biliary acids was achieved by putrefaction (4, 7), but until the introduction of a specific hydrolytic enzyme by Nair (8, 9), the usual method for obtaining nitrogen-free bile acids was alkali treatment. This type of treatment prompted Strecker (10) to coin the term “cholalic” acid to indicate the nitrogen-free compound obtained from cholic acid (of Gmelin) by treatment with alkali. The first preparation of crystalline bile acids was achieved by Platner (11, 12) by the addition of ether to an alcoholic solution of dried bile.

Keywords

Bile Acid Cholic Acid Lithocholic Acid Primary Bile Acid Glycocholic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.J. Thenard, Ann. Chim. (I), 64, 103 (1807).Google Scholar
  2. 2.
    J. Berzelius, Ann. Chim. 71, 218 (1809).Google Scholar
  3. 3.
    L. Gmelin, in “Die Verdauung” (F. Tiedemann and L. Gmelin, eds. ), Heidelberg (1826).Google Scholar
  4. 4.
    J. Berzelius, Ann. 33, 139 (1840).Google Scholar
  5. 5.
    J. Berzelius, Ann. 43, 1 (1842).Google Scholar
  6. 6.
    H. Demarcay, Ann. 27, 270 (1838).Google Scholar
  7. 7.
    E. Von Gorup-Besanez, Ann. 59, 129 (1846).Google Scholar
  8. 8.
    P.P. Nair, M. Gordon, and d. Reback, J. Biol. Chem. 242, 7 (1967).PubMedGoogle Scholar
  9. 9.
    P.P. Nair, in “Bile Salt Metabolism” (L. Schiff, J.B. Carey, Jr., and J.M. Dietschy, eds.), p. 172, Charles C Thomas, Springfield, Ill. (1969).Google Scholar
  10. 10.
    A. Strecker, Ann. 67, 1 (1848).Google Scholar
  11. 11.
    E.A. Platner, Ann. 51, 105 (1844).Google Scholar
  12. 12.
    E.A. Platner, J. Prakt. Chem. (I), 40, 129 (1846).CrossRefGoogle Scholar
  13. 13.
    A. Strecker, Ann. 70, 149 (1849).Google Scholar
  14. 14.
    F. Mylius, Ber. 19, 374 (1886).Google Scholar
  15. 15.
    C.G. Lehmann, “Lehrbuch der Physiolische Chemie,” Engelmann, Leipzig, 1850.Google Scholar
  16. 16.
    F. Hoppe-Seyler, J. Prakt. Chem. 89, 257 (1863).CrossRefGoogle Scholar
  17. 17.
    H. Wieland and W. Kapitel, Z. Physiol. Chem. 212, 269 (1933).CrossRefGoogle Scholar
  18. 18.
    H. Wieland and F.J. Weil, Z. Physiol. Chem. 80, 287 (1912).CrossRefGoogle Scholar
  19. 19.
    P. Lachinov, Ber. 15, 713 (1882).Google Scholar
  20. 20.
    H. Wieland and H. Sorge, Z. Physiol. Chem. 97, 1 (1916).CrossRefGoogle Scholar
  21. 21.
    H. Rheinboldt, Ann. 451, 256 (1926).Google Scholar
  22. 22.
    C. Gundelach and A. Strecker, Ann. 62, 205 (1847).Google Scholar
  23. 23.
    W. Heintz and J. Wislicenus, Poggendorff’s Annalen der Physik 108, 547 (1859).CrossRefGoogle Scholar
  24. 24.
    H. Fischer, Z. Physiol. Chem. 73, 204 (1911).CrossRefGoogle Scholar
  25. 25.
    L.F. Fieser and M. Fieser, “Steroids,” Reinhold, New York (1959).Google Scholar
  26. 26.
    D. Kritchevsky, in “Comprehensive Biochemistry” (M. Florkin and E.H. Stotz, eds.), Vol. 10, p. 3, Elsevier, New York (1963).Google Scholar
  27. 27.
    H. Van Belle, “Cholesterol, Bile Acids and Atherosclerosis,” p. 10, North-Holland, Amsterdam (1965).Google Scholar
  28. 28.
    O. Hammarsten, Ber. 14, 71 (1881).Google Scholar
  29. 29.
    H. Wieland and E. Boersch, Z. Physiol. Chem. 106, 190 (1919).CrossRefGoogle Scholar
  30. 30.
    A. Windaus, Arch. Pharm. 246, 117 (1908).CrossRefGoogle Scholar
  31. 31.
    A. Windaus and K. Neukirchen, Ber. 52, 1918 (1919).Google Scholar
  32. 32.
    H. Wieland and R. Jacobi, Ber. 59, 2064 (1926).Google Scholar
  33. 33.
    H. Wieland and H. Sorge, Z. Physiol. Chem. 98, 59 (1916).CrossRefGoogle Scholar
  34. 34.
    H. Wieland, K. Kraus, H. Keller, and H. Ottawa, Z. Physiol. Chem. 241, 47 (1936).CrossRefGoogle Scholar
  35. 35.
    H. Wieland and P. Weyland, Z. Physiol. Chem. 110, 136 (1920).Google Scholar
  36. 36.
    H. Wieland and G. Reverey, Z. Physiol. Chem. 140, 186 (1924).CrossRefGoogle Scholar
  37. 37.
    H. Lettré, R. Tschesche, and H. Fernholtz, “Über Sterine, Gallensäuren und verwandte Naturstoffe,” Enke Verlag, Stuttgart (1954).Google Scholar
  38. 38.
    C.W. Shoppee, “Chemistry of the Steroids,” p. 115, Butterworths, Washington (1964).Google Scholar
  39. 39.
    O. Hammarsten, Z. Physiol. Chem. 61, 454 (1909).CrossRefGoogle Scholar
  40. 40.
    A. Windaus and A. Van Schoor, Z. Physiol. Chem. 173, 312 (1928).CrossRefGoogle Scholar
  41. 41.
    G.A.D. Haslewood and V.M. Wootton, Biochem. J. 49, 67 (1951).PubMedGoogle Scholar
  42. 42.
    G.A.D. Haslewood, Biochem. J. 49, 718 (1951).PubMedGoogle Scholar
  43. 43.
    W. Klyne and W.M. Stokes, J. Chem. Soc. 1954, 1979.Google Scholar
  44. 44.
    O. Hammarsten, Z. Physiol. Chem. 36, 537 (1902).CrossRefGoogle Scholar
  45. 45.
    Y. Kurauti and T. Kazuno, Z. Physiol. Chem. 262, 53 (1939).CrossRefGoogle Scholar
  46. 46.
    G.A.D. Haslewood, Biochem. J. 52, 583 (1952).PubMedGoogle Scholar
  47. 47.
    E. Staple and J.L. Rabinowitz, Biochim. Biophys. Acta 59, 735 (1962).PubMedCrossRefGoogle Scholar
  48. 48.
    J.B. Carey, Jr., and G.A.D. Haslewood, J. Biol. Chem. 238, 855 (1963).PubMedGoogle Scholar
  49. 49.
    P.P. Shah, E. Staple, I.L. Shapiro, and D. Kritchevsky, Lipids 4, 82 (1969).PubMedCrossRefGoogle Scholar
  50. 50.
    J.B. Carey, Jr., J. Clin. Invest. 43, 1443 (1964).PubMedCrossRefGoogle Scholar
  51. 51.
    T. Shimizu and T. Oda, Z. Physiol. Chem. 227, 74 (1934).CrossRefGoogle Scholar
  52. 52.
    R.H. Palmer, Proc. Natl. Acad. Sci. U.S. 58, 1047 (1967).CrossRefGoogle Scholar
  53. 53.
    T. Hoshita and I. Kazuno, Adv. Lipid Res. 6, 207 (1968).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • David Kritchevsky
    • 1
    • 3
  • Padmanabhan P. Nair
    • 2
  1. 1.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA
  2. 2.Biochemistry Research Division, Department of MedicineSinai Hospital of Baltimore, Inc.BaltimoreUSA
  3. 3.Division of Animal Biology, School of Veterinary MedicineUniversity of PennsylvaniaUSA

Personalised recommendations