Thermodynamic Approach to Collision Processes

  • R. D. Levine
  • R. B. Bernstein
Part of the Modern Theoretical Chemistry book series (MTC, volume 2)

Abstract

The thermodynamic approach to collision processes, which makes use of information theory, is an attempt to bridge the gap between the equilibrium and disequilibrium (i.e., thermodynamic and kinetic) points of view. It deals with the phenomena of kinetics, retaining the concern with time-evolution, yet adopts from thermodynamics the concept of a state function (and thus allows for the construction of thermodynamic cycles), which is valid irrespective of approximation or detailed models of the dynamics. The realization that the overriding concern of traditional thermodynamics with equilibrium, static, situations has been out of choice rather than out of necessity makes our approach possible. In what follows we shall often draw parallels between equilibrium and disequilibrium systems.

Keywords

Internal State Collision Process Thermodynamic Approach Branching Ratio Molecular Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics, Clarendon Press, Oxford (1974)Google Scholar
  2. 2.
    D. R. Herschbach, Reactive scattering, Faraday Discuss. Chem. Soc. 55, 233–251 (1973)CrossRefGoogle Scholar
  3. 3.
    J. C. Polanyi, Molecular beam scattering, Faraday Discuss. Chem. Soc. 55, 389–409 (1973)CrossRefGoogle Scholar
  4. 4.
    R. D. Levine and R. B. Bernstein, Energy disposal and energy consumption in elementary chemical reactions: The information theoretic approach, Acc. Chem. Res. 7, 393–400, (1974).CrossRefGoogle Scholar
  5. 5.
    R. B. Bernstein and R. D. Levine, Role of energy in relative molecular scattering: an information-theoretic approach, Adv. At. Mol. Phys. 11, 215–297 (1975).CrossRefGoogle Scholar
  6. 6.
    J. W. Gibbs, Collected Works, Vol. II, Longmans, Green and Co. Ltd., London (1928).Google Scholar
  7. 7.
    E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106, 620–630 (1957)CrossRefGoogle Scholar
  8. E. T. Jaynes, Information theory and statistical mechanics. II, Phys. Rev. 108, 171–190 (1957).CrossRefGoogle Scholar
  9. 8.
    E. T. Jaynes, in: Statistical Physics, 1962 Brandeis Lectures, Vol. 3, p. 181, W. A. Benjamin, Inc., Reading, Mass. (1963).Google Scholar
  10. 9.
    M. Tribus, Thermostatics and Thermodynamics, Van Nostrand Reinhold Company, New York (1961).Google Scholar
  11. 10.
    A. Katz, Principles of Statistical Mechanics, W. H. Freeman and Company, Publishers, San Francisco (1967).Google Scholar
  12. 11.
    R. Kubo, Statistical Mechanics, North-Holland Publishing Company, Amsterdam (1965).Google Scholar
  13. 12.
    R. D. Levine and R. B. Bernstein, Analysis of energy disposal: Thermodynamic aspects of the entropy deficiency of a product state distribution, Chem. Phys. Lett. 22, 217–221 (1973).CrossRefGoogle Scholar
  14. 13.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics, John Wiley and Sons, Inc., New York (1940).Google Scholar
  15. 14.
    A. I. Khinchin, Mathematical Foundations of Information Theory, Dover Publications, Inc., New York (1957).Google Scholar
  16. 15.
    R. D. Levine, to be published.Google Scholar
  17. 16.
    C. B. Moore, Laser studies of vibrational energy transfer, Acc. Chem. Res. 2, 103–109 (1969).CrossRefGoogle Scholar
  18. 17.
    R. G. Gordon and J. I. Steinfeld, in: Molecular Energy Transfer ( R. D. Levine and J. Jortner, eds.), pp. 67–84, John Wiley and Sons, Inc., New York (1976).Google Scholar
  19. 18.
    R. M. Osgood, Jr., P. B. Sackett, and A. Javan, Measurement of vibrational-vibrational exchange rates for excited vibrational levels (2 S v S 4) in hydrogen fluoride gas, J. Chem. Phys. 60, 1464–1480 (1974).CrossRefGoogle Scholar
  20. 19.
    I. Procaccia and R. D. Levine, The populations time evolution in vibrational disequilibrium: An information theoretic approach with applications to HF, J. Chem. Phys. 62, 3819–3820 (1975).CrossRefGoogle Scholar
  21. 20.
    M. Planck, Theory of Heat Radiation, McGraw-Hill, Inc., Blakiston Division, New York (1914).Google Scholar
  22. 21.
    L. P. Wheeler, Josiah Willard Gibbs, p. 160, Yale University Press, New Haven, Conn. (1952).Google Scholar
  23. 22.
    T. S. Kuhn, Structure of Scientific Revolutions, 2nd ed., University of Chicago Press, Chicago (1970).Google Scholar
  24. 23.
    A. Ben-Shaul, R. D. Levine, and R. B. Bernstein, Entropy and chemical change. II. Analysis of product energy distributions; temperature and entropy deficiency, J. Chem. Phys. 57, 5427–5447 (1972)CrossRefGoogle Scholar
  25. A. Ben-Shaul, R. D. Levine, and R. B. Bernstein, Prior-expectation distribution functions for energy disposal and energy consumption in reactive molecular collisions, J. Chem. Phys. 61, 4937–4938 (1974).CrossRefGoogle Scholar
  26. 24.
    R. D. Levine, Quantum Mechanics of Molecular Rate Processes, Clarendon Press, Oxford (1969).Google Scholar
  27. 25.
    J. L. Kinsey, Microscopic reversibility for rates of chemical reactions carried out with partial resolution of the product and reactant states, J. Chem. Phys. 54, 1206–1217 (1971).CrossRefGoogle Scholar
  28. 26.
    R. B. Bernstein and R. D. Levine, The relation between collinear and 3-D dynamical calculations of reactive molecular collisions, Chem. Phys. Lett. 29, 314–318 (1974).CrossRefGoogle Scholar
  29. 27.
    C. Rebick, R. D. Levine, and R. B. Bernstein, Energy requirements and energy disposal: Reaction probability matrices and a computational study of a model system, J. Chem. Phys. 60, 4977–4984 (1974).CrossRefGoogle Scholar
  30. 28.
    I. Procaccia and R. D. Levine, Vibrational energy transfer in molecular collisions: An information theoretic analysis and synthesis, J. Chem. Phys. 63, 4261–4279 (1975).CrossRefGoogle Scholar
  31. 29.
    J. Manz and R. D. Levine, The effect of reagent energy on chemical reaction rates: An information theoretic analysis. J. Chem. Phys. 63, 4280–4303 (1975).CrossRefGoogle Scholar
  32. 30.
    M. Rubinson and J. I. Steinfeld, Entropy analysis of product energy distributions in nonreactive inelastic collisions, Chem. Phys. 4, 467–475 (1974).CrossRefGoogle Scholar
  33. 31.
    U. Dinur and R. D. Levine, On the entropy of a continuous distribution, Chem. Phys. 9, 17–28 (1975).CrossRefGoogle Scholar
  34. 32.
    O. Kafri and R. D. Levine, Thermodynamic analysis of chemical laser systems, Chem. Phys. Lett. 27, 175–179 (1974).Google Scholar
  35. 33.
    R. D. Levine, Analysis of Molecular Collisions: An Information-Theoretical Approach, Invited papers, VIII International Conference on the Physics of Electronic and Atomic Collisions, Belgrade (1973), pp. 567–582.Google Scholar
  36. 34.
    A. Ben-Shaul, On entropies and temperature parameters characterizing product distributions in chemical reactions and corresponding thermodynamic quantities, Mol. Phys. 27, 1585–1600 (1974).CrossRefGoogle Scholar
  37. 35.
    K. L. Kompa, Chemical lasers, Top. Curr. Chem. 37, 1–92 (1973).Google Scholar
  38. 36.
    A. Ben-Shaul, G. L. Hofacker, and K. L. Kompa, Characterization of inverted populations in chemical lasers by temperaturelike distributions: Gain characteristics in the F + H2–0 HF + H system, J. Chem. Phys. 59, 4664–4673 (1973).CrossRefGoogle Scholar
  39. 37.
    M. J. Berry, F+H2, D2, HD reactions: Chemical laser determination of the product vibrational state populations and the F+HD intramolecular kinetic isotope effect, J. Chem. Phys. 59, 6229–6253 (1973).CrossRefGoogle Scholar
  40. 38.
    O. Kafri, A. Ben-Shaul, and R. D. Levine, Chemical lasers: A thermodynamic analysis of a surprisal in disequilibrium, Chem. Phys. 10, 367–392 (1975).CrossRefGoogle Scholar
  41. 39.
    R. D. Levine, B. R. Johnson, and R. B. Bernstein, On the product rotational state distribution in exoergic atom-diatomic molecule reactions, Chem. Phys. Lett. 19, 1–6 (1973).CrossRefGoogle Scholar
  42. 40.
    A. Ben-Shaul, Product state distributions in chemical reactions: Vibrational temperature and rotational distributions, Chem. Phys. 1, 244–255 (1973).CrossRefGoogle Scholar
  43. 41.
    R. D. Levine, in: Proceedings of the International Symposium on Chemical and Biochemical Reactivity, pp. 35–50, Academy of Science, Jerusalem (1973).Google Scholar
  44. 42.
    D. L. King, H. J. Loesch, and D. R. Herschbach, Comments on extremely inelastic energy transfer, Faraday Discuss. Chem. Soc. 55, 222–225 (1973).CrossRefGoogle Scholar
  45. 43.
    M. J. Berry, Golden rule calculation of reaction product vibronic state distributions, Chem. Phys. Lett. 27, 73–77 (1974)CrossRefGoogle Scholar
  46. M. J. Berry, Vibronic surprisal analysis of the dynamics of photo-dissociation and related reactions, Chem. Phys. Lett. 29, 323–328 (1974)CrossRefGoogle Scholar
  47. M. J. Berry, Golden rule calculation of product vibronic population inversions in photodissocation and related reactions, Chem. Phys. Lett. 29, 329–336 (1974).CrossRefGoogle Scholar
  48. 44.
    N. C. Biais and D. G. Truhlar, Monte Carlo trajectories: The reaction H + Br2 HET- + Br, J. Chem. Phys. 61, 4186–4203 (1974).CrossRefGoogle Scholar
  49. 45.
    J. C. Polanyi and K. B. Woodall, Energy distribution among reaction products. VI. F + H2, D2, J. Chem. Phys. 57, 1574–1586 (1972).CrossRefGoogle Scholar
  50. 46.
    G. L. Hofacker and R. D. Levine, Diabatic transition state theory and the concept of temperature, Chem. Phys. Lett. 15, 165–170 (1972).CrossRefGoogle Scholar
  51. 47.
    G. L. Hofacker and R. D. Levine, A non-adiabatic model for population inversion in molecular collisions, Chem. Phys. Lett. 9, 617–620 (1971).CrossRefGoogle Scholar
  52. 48.
    A. Ben-Shaul and G. L. Hofacker, in: Handbook of Chemical Lasers (J. F. Bott and R. W. Gross, eds.), John Wiley and Sons, Inc., New York (1976), in press.Google Scholar
  53. 49.
    J. P. Toennies, in: Molecular Energy Transfer ( R. D. Levine and J. Jortner, eds.), pp. 16–52, John Wiley and Sons, Inc., New York (1976).Google Scholar
  54. 50.
    R. D. Levine and R. B. Bernstein, Energy disposal and energy requirements for elementary chemical reactions, Faraday Discuss. Chem. Soc. 55, 100–112 (1973).CrossRefGoogle Scholar
  55. 51.
    C. Rebick and R. D. Levine, Collision induced dissociation: A statistical theory, J. Chem. Phys. 58, 3942–3952 (1973).CrossRefGoogle Scholar
  56. 52.
    W. A. Chupka, J. Berkowitz, and M. E. Russell, A study of some reactions of H2* in selected vibrational states, in: Abstracts VI International Conference on the Physics of Electronic and Atomic Collisions, pp. 71–72, The M.I.T. Press, Cambridge, Mass. (1969).Google Scholar
  57. 53.
    I. W. M. Smith, in: Molecular Energy Transfer ( R. D. Levine and J. Jortner, eds.), pp. 85–113, John Wiley and Sons, Inc., New York (1976).Google Scholar
  58. 54.
    J. I. Steinfeld, in: Molecular Spectroscopy: Modern Research ( K. N. Rao and C. W. Mathews, eds.), pp. 223–230, Academic Press, Inc., New York (1972).CrossRefGoogle Scholar
  59. 55.
    I. Procaccia and R. D. Levine, Vibrational energy transfer in non-reactive molecular collisions: An information theoretic analysis, Chem. Phys. Lett. 33, 5–10 (1975).CrossRefGoogle Scholar
  60. 56.
    D. L. Thompson, Monte Carlo classical dynamical study of the CI + C12 and I + I2 systems: Vibrational relaxation and atom-exchange reactions, J. Chem. Phys. 60, 4557–4567 (1974).CrossRefGoogle Scholar
  61. 57.
    I. Procaccia and R. D. Levine, From bulk vibrational relaxation data to the detailed (microscopic) rate constants, J. Chem. Phys. 62, 2496–2497 (1975).CrossRefGoogle Scholar
  62. 58.
    F. F. Crim and G. A. Fisk, unpublished; F. F. Crim, Ph.D. thesis, Cornell University, Ithaca, New York (1974).Google Scholar
  63. 59.
    J. C. Polanyi and K. B. Woodall, Mechanism of rotational relaxation, J. Chem. Phys. 56, 1563–1572 (1972)CrossRefGoogle Scholar
  64. R. B. Bernstein, Note on the Polanyi-Woodall Equation for rotational relaxation, J. Chem. Phys. 62, 4570 (1975).CrossRefGoogle Scholar
  65. 60.
    A. B. Callear and J. D. Lambert, in: Comprehensive Chemical Kinetics (C. H. Bamford and C. F. Tipper, eds.) Vol. 3, pp. 182–273, American Elsevier Publishing Company, Inc., New York (1969).Google Scholar
  66. 61.
    C. B. Moore, Vibration-vibration energy transfer, Adv. Chem. Phys. 23, 41–83 (1973).CrossRefGoogle Scholar
  67. 62.
    I. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic theory of multistate relaxation processes, Adv. Mol. Relaxation Processes 1, 13–68 (1967).CrossRefGoogle Scholar
  68. 63.
    C. A. Parr, J. C. Polanyi, and W. H. Wong, Distribution of reaction products (theory). VIII. Cl + HI, Cl + DI, J. Chem. Phys. 58, 5–20 (1973).CrossRefGoogle Scholar
  69. 64.
    D. H. Maylotte, J. C. Polanyi, and K. B. Woodall, Energy distribution among reaction products. IV. X + HY (X = Cl, Br; Y =-=-13r, I), CI + DI, J. Chem. Phys. 57, 1547–1560 (1972).CrossRefGoogle Scholar
  70. 65.
    A. Kafri, E. Pollak, R. Kosloff, and R. D. Levine, Translational energy disposal in molecular collisions, Chem. Phys. Lett. 33, 201–206 (1975).CrossRefGoogle Scholar
  71. 66.
    D. R. Herschbach, Molecular beam studies of internal excitation of reaction products, Appl. Opt. Suppl. 2, 128–144 (1965)Google Scholar
  72. A. Kafri, E. Pollak, R. Kosloff, and R. D. Levine, in: Molecular Beams, Advances in Chemical Physics (J. Ross, ed.), Vol. X, pp. 319–393, John Wiley and Sons, Inc. ( Interscience Division ), New York (1966).Google Scholar
  73. 67.
    J. C. Polanyi and J. L. Schreiber, Distribution of reaction products (Theory). Investigation of an ab initio energy-surface for F+ H2 HF+H, Chem. Phys. Lett. 29, 319–322 (1974).CrossRefGoogle Scholar
  74. 68.
    K. G. Anlauf, P. E. Charters, D. S. Horne, R. G. McDonald, D. H. Maylotte, J. C. Polanyi, W. J. Skrlac, D. C. Tardy, and K. B. Woodall, Translational energy-distribution in the products of some exothermic reactions, J. Chem. Phys. 53, 4091–4092 (1970).CrossRefGoogle Scholar
  75. 69.
    P. J. Kuntz, M. H. Mok, and J. C. Polanyi, Distribution of reaction products. V. Reactions forming an ionic bond, M + XC (3D), J. Chem. Phys. 50, 4623–4652 (1969)CrossRefGoogle Scholar
  76. P. J. Kuntz, The K + ICH3 -+ KI + CH3 reaction: Interpretation of the angular and energy distributions in terms of a direct interaction model, Mol. Phys. 23, 1035–1050 (1972).CrossRefGoogle Scholar
  77. 70.
    A. M. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi, and J. L. Schreiber, Effect of changing reagent energy on reaction probability and product energy distribution, Faraday Discuss. Chem. Soc. 55, 252–276 (1973).CrossRefGoogle Scholar
  78. 71.
    R. D. Levine and R. Kosloff, The well-reasoned choice: An information-theoretic approach to branching ratios in molecular rate processes, Chem. Phys. Lett. 28, 300–304 (1974).CrossRefGoogle Scholar
  79. 72.
    R. D. Levine and R. B. Bernstein, Branching ratios in reactive molecular collisions, Chem. Phys. Leu. 29, 1–6 (1974).CrossRefGoogle Scholar
  80. 73.
    R. D. Levine, R. B. Bernstein, and M. Tamir, Information-theoretic analysis of reactive/nonreactive branching ratios for triatomic collision complexes: K+CsF, RbF, in: Abstracts IX International Conference on the Physics of Electronic and Atomic Collisions, pp. 333–334, University of Washington Press, Seattle (1975).Google Scholar
  81. 74.
    S. Stolte, A. E. Proctor, and R. B. Bernstein, Energy dependence of the branching fraction and cross sections for the decay of collision complexes: K + CsF, RbF, J. Chem. Phys. 61, 3855–3856 (1974).CrossRefGoogle Scholar
  82. 75.
    W. B. Miller, S. A. Safron, and D. R. Herschbach, Molecular beam kinetics: Four-atom collision complexes in exchange reactions of CsCI with KCl and KI, J. Chem. Phys. 56, 3581–3592 (1972).CrossRefGoogle Scholar
  83. 76.
    R. A. White and J. C. Light, Statistical theory of bimolecular exchange reactions: Angular distribution, J. Chem. Phys. 55, 379–387 (1971).CrossRefGoogle Scholar
  84. 77.
    G. H. Kwei, B. P. Boffardi, and S. F. Sun, Classical trajectory studies of long-lived collision complexes. I. Reaction of K atoms with NaCI molecules, J. Chem. Phys. 58, 1722–1734 (1973).CrossRefGoogle Scholar
  85. 78.
    U. Dinur, R. Kosloff, R. D. Levine, and M. J. Berry, Analysis of electronically non-adiabatic chemical reactions: An information theoretic approach, Chem. Phys. Lett. 34, 199–205 (1975).CrossRefGoogle Scholar
  86. 79.
    U. Dinur and R. D. Levine, Does the H + ICI reaction form electronically excited I (2P112) atoms?, Chem. Phys. Lett. 31, 410–415 (1975).CrossRefGoogle Scholar
  87. 80.
    M. A. Nazar, J. C. Polanyi, and W. J. Skrlac, Energy distribution among reaction products, H + NOCI, H + ICI, Chem. Phys. Lett. 29, 473–479 (1974).CrossRefGoogle Scholar
  88. 81.
    N. Jonathan, C. M. Melliar-Smith, S. Okuda, D. H. Slater, and D. Tim] in, Initial vibrational energy level distributions determined by infra-red chemiluminescence. II. The reaction of fluorine atoms with hydrogen halides, Mol. Phys. 22, 561–574 (1971).CrossRefGoogle Scholar
  89. 82.
    A. Persky, Kinetic isotope effects in the reaction of fluorine atoms with molecular hydrogen. II. The F + HD/DH intramolecular isotope effect, J. Chem. Phys. 59, 5578–5584 (1973).CrossRefGoogle Scholar
  90. 83.
    R. B. Bernstein and R. D. Levine, Information-theoretic analysis of the kinetic intramolecular isotope effect for the F + HD reaction, J. Chem. Phys. 61, 4926–4927 (1974).CrossRefGoogle Scholar
  91. 84.
    D. S. Perry and J. C. Polanyi, An experimental test of the Bernstein—Levine theory of branching ratios, Chem. Phys. 12, 37–43 (1976).CrossRefGoogle Scholar
  92. 85.
    R. B. Bernstein, Branching ratios in reactive collisions: Theory vs. experiment, Int. J. Quantum Chem., Symp. 9, 385–395 (1975).CrossRefGoogle Scholar
  93. 86.
    H. Kaplan and R. D. Levine, Translation energy dependence of the reaction cross section: An information theoretic synthesis with applications to M+CH3I, J. Chem. Phys. 63, 5064–5066 (1975)CrossRefGoogle Scholar
  94. H. Kaplan and R. D. Levine, Systematic trends in the alkali metal-alkyl iodide reactions: The translational energy dependence of the reaction cross section, Chem. Phys. Lett. 39, 1–7 (1976).CrossRefGoogle Scholar
  95. 87.
    R. E. Wyatt, Information-theoretic analysis of quantum mechanical reaction cross sections, Chem. Phys. Lett. 34, 167–169 (1975).CrossRefGoogle Scholar
  96. 88.
    L. Boltzmann, Lectures on Gas Theory, University of California Press, Berkeley (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • R. D. Levine
    • 1
  • R. B. Bernstein
    • 2
  1. 1.Department of Physical ChemistryThe Hebrew UniversityJerusalemIsrael
  2. 2.Chemistry and Physics DepartmentsThe University of TexasAustinUSA

Personalised recommendations