Skip to main content

Semiclassical Methods in Molecular Collision Theory

  • Chapter
Dynamics of Molecular Collisions

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 2))

Abstract

The connection between classical and quantum mechanics has been of continuing interest since the time of Bohr and de Broglie, and the reader is referred to a number of established texts.(1−3) However, it is only in recent years that this connection has been applied to the solution of molecular scattering problems. The aim is to exploit the relative tractability of the classical equations of motion to obtain quantum mechanically accurate transition probabilities and collision cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. M. Dirac, Principles of Quantum Mechanics, 4th ed., Oxford University Press, London (1958).

    Google Scholar 

  2. M. Born, The Mechanics of the Atom, G. Bell & Sons Ltd., London (1960).

    Google Scholar 

  3. V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques, Dunod, Gautier Villars, Paris (1972).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1965).

    Google Scholar 

  5. M. Born and E. Wolf, Principles of Optics, Pergamon Press, Inc., Elmsford, N.Y. (1970).

    Google Scholar 

  6. S. C. Miller and R. H. Good, A WKB-type approximation to the Schrödinger equation, Phys. Rev. 91, 174–179 (1953).

    Article  CAS  Google Scholar 

  7. C. Chester, B. Friedmann, and F. Ursell, An extension of the method of steepest descents, Proc. Cambridge Philos. Soc. 53, 599–611 (1957).

    Article  Google Scholar 

  8. M. V. Berry, Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc., London 89, 479–490 (1966).

    Google Scholar 

  9. M. V. Berry, Uniform approximations for glory scattering and diffraction peaks, J. Phys. B 2, 381–392 (1969).

    Article  Google Scholar 

  10. M. V. Berry and K. E. Mount, Semi-classical approximations in wave mechanics, Rep. Prog. Phys. 35, 315–397 (1972).

    Article  CAS  Google Scholar 

  11. J. N. L. Connor, Evaluation of multi-dimensional canonical integrals in semi-classical collision theory, Mol. Phys. 26, 1371–1378 (1973).

    Article  CAS  Google Scholar 

  12. P. Pechukas, Analysis of the Miller-Good method for approximating bound states, J. Chem. Phys. 54, 3864–3873 (1971).

    Article  CAS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 2nd ed., Addison-Wesley Publishing Company, Inc., Reading, Mass. (1965).

    Google Scholar 

  14. K. W. Ford and J. A. Wheeler, Semi-classical description of scattering, Ann. Phys. NY 7, 259–286 (1959).

    Article  Google Scholar 

  15. K. W. Ford and J. A. Wheeler, Application of semi-classical analysis, Ann. Phys. NY 7, 286–322 (1959).

    Google Scholar 

  16. W. H. Miller, Classical limit quantum mechanics and the theory of molecular collisions. Adv. Chem. Phys. 25, 69–177 (1974).

    Article  Google Scholar 

  17. N. Fröman and P. O. Fröman, J. W. K. B. Approximation: Contributions to the Theory, North-Holland Publishing Company, Amsterdam (1965).

    Google Scholar 

  18. J. Heading, Phase Integral Methods, Methuen & Co. Ltd., London (1962).

    Google Scholar 

  19. H. Jeffreys, Asymptotic Approximations, Oxford University Press, London (1962).

    Google Scholar 

  20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York (1965).

    Google Scholar 

  21. H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, 3rd ed., Cambridge University Press, London (1956).

    Google Scholar 

  22. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book Company, New York (1965).

    Google Scholar 

  23. R. E. Langer, On the connection formulas and solutions of the wave equation, Phys. Rev. 51, 669–676 (1937).

    Article  Google Scholar 

  24. M. S. Child, Uniform evaluation of one-dimensional matrix elements, Mol. Phys. 29, 14211429 (1975).

    Google Scholar 

  25. M. S. Child, Molecular Collision Theory, Academic Press, Inc., New York (1974).

    Google Scholar 

  26. B. R. Johnson, A generalized JWKB approximation for multichannel scattering, Chem. Phys. 2, 381–399 (1973).

    Article  Google Scholar 

  27. B. C. Eu, Theory of inelastic collisions: Uniform asymptotic (WKB) solutions and semiclassical S-matrix elements for multichannel problems, J. Chem. Phys. 56, 2507–2516 (1972).

    Article  CAS  Google Scholar 

  28. J. N. L. Connor, On the semi-classical description of molecular orbiting collisions, Mol. Phys. 15, 621–631 (1968).

    Article  CAS  Google Scholar 

  29. A. S. Dickinson, An approximate treatment of shape resonances in elastic scattering, Mol. Phys. 18, 441–449 (1970).

    Article  Google Scholar 

  30. M. S. Child, Semi-classical theory of tunneling and curve crossing problems: A diagrammatic approach, J. Mol. Spectrosc. 53, 280–301 (1974).

    Article  CAS  Google Scholar 

  31. M. S. Child, in: Molecular Spectroscopy (R. F. Barrow, D. A. Long, and D. J. Millen, eds.), Vol. 2, pp. 466–512, Specialist Periodical Report, The Chemical Society, London (1974).

    Google Scholar 

  32. J. N. L. Connor and R. A. Marcus, Theory of semi-classical transition probabilities for inelastic and reactive collisions. II. Asymptotic evaluation of the S matrix, J. Chem. Phys. 55, 5636–5643 (1971).

    Article  CAS  Google Scholar 

  33. J. R. Stine and R. A. Marcus, Semi-classical transition probabilities by an asymptotic evaluation of the S matrix for elastic and inelastic collisions, J. Chem. Phys. 59, 5145–5150 (1973).

    Article  CAS  Google Scholar 

  34. J. H. Van Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Natl. Acad. Sci. USA 14, 178–188 (1928).

    Article  Google Scholar 

  35. V. A. Fock, On the canonic transformation in classical and quantum mechanics, Vestn. Leningr. Univ. Ser. Mat. Fiz. Khim. 16 (3), 67–70 (1959) [Tech. Transi. No. 60–17464, 4, 53–58 (1960)].

    Google Scholar 

  36. H. Goldstein, Classical Mechanics. Addison-Wesley Publishing Company, Inc., Reading, Mass. (1959).

    Google Scholar 

  37. H. C. Corben and P. Stehle, Classical Mechanics, John Wiley & Sons, Inc., New York (1960).

    Google Scholar 

  38. W. H. Miller, Semi-classical theory of atom-diatom collisions: Path integrals and the classical S matrix, J. Chem. Phys. 53, 1949–1959 (1970).

    Article  CAS  Google Scholar 

  39. W. H. Miller, Classical S matrix: Numerical applications to inelastic collisions, J. Chem. Phys. 53, 3578–3587 (1970).

    Article  CAS  Google Scholar 

  40. J. Keller, Corrected Bohr-Sommerfeld quantum corrections for non-separable systems, Ann. Phys. NY 4, 180–188 (1958).

    Article  Google Scholar 

  41. W. H. Miller, Classical quantization of non-separable system, J. Chem. Phys. 56, 38–45 (1972).

    Article  CAS  Google Scholar 

  42. W. Eastes and R. A. Marcus, Semi-classical calculation of bound states of a multi-dimensional system, J. Chem. Phys. 61, 4301–4307 (1974).

    Article  CAS  Google Scholar 

  43. I. C. Percival, Regular and irregular spectra, J. Phys. B 6, L229–232 (1973).

    Article  Google Scholar 

  44. B. Leaf, Canonical operators for the simple harmonic oscillator, J. Math. Phys. (N.Y.) 10, 1980–1987 (1969).

    Article  Google Scholar 

  45. P. A. M. Dirac, The elimination of the nodes in quantum mechanics, Proc. R. Soc. London Ser. A 111, 281–305 (1926).

    Article  Google Scholar 

  46. P. Pechukas, Time-dependent semi-classical theory. I: Potential scattering, Phys. Rev. 181, 166–173 (1969).

    Article  Google Scholar 

  47. P. Pechukas, Time-dependent semi-classical theory. II: Atomic collisions, Phys. Rev. 181, 174–185 (1969).

    Article  CAS  Google Scholar 

  48. R. A. Marcus, Theory of semi-classical transition probabilities (S matrix) for inelastic and reactive collisions, J. Chem. Phys. 54, 3965–3979 (1971).

    Article  CAS  Google Scholar 

  49. H. Kreek and R. A. Marcus, Semi-classical collision theory, multidimensional integral method, J. Chem. Phys. 61, 3308–3312 (1974).

    Article  CAS  Google Scholar 

  50. W. H. Miller and T. F. George, Classical S matrix theory of reactive tunneling: Linear H + H2 collisions, J. Chem. Phys. 57, 2458–2467 (1972).

    Article  Google Scholar 

  51. J. R. Stine and R. A. Marcus, Theory of semi-classical transition probabilities for inelastic and reactive collisions. IV. Classically inaccessible transitions calculated by integration along complex valued trajectories, Chem. Phys. Lett. 15, 536–544 (1972).

    Article  Google Scholar 

  52. W. H. Miller and T. F. George, Analytical continuation of classical mechanics for classically forbidden collision processes, J. Chem. Phys. 56, 5668–5681 (1972).

    Article  CAS  Google Scholar 

  53. R. A. Marcus, Semi-classical S matrix theory. VI: Integral expression and transformation of conventional coordinates, J. Chem. Phys. 59, 5135–5144 (1973).

    Article  CAS  Google Scholar 

  54. S. J. Fraser, L. Gottdiener, and J. N. Murnell, The relationship between classical phases in Cartesian and action-angle variables, Mol. Phys. 29, 415–419 (1975).

    Article  CAS  Google Scholar 

  55. J. D. Doll and W. H. Miller, Classical Smatrix for vibrational excitation of H2 by collision with He in three dimensions, J. Chem. Phys. 57, 5019–5026 (1972).

    Article  CAS  Google Scholar 

  56. D. R. Bates and D. S. F. Crothers, Semi-classical treatment of atomic collisions, Proc. R. Soc. London Ser. A 315, 465–478 (1970).

    Article  CAS  Google Scholar 

  57. J. B. Delos, W. R. Thorson, and S. K. Knudson, Semiclassical theory of inelastic collisions. I. Classical picture and semiclassical formulation, Phys. Rev. A 6, 709–720 (1972).

    Article  Google Scholar 

  58. I. C. Percival and D. Richards, A correspondence principle for strongly coupled states, J. Phys. B 3, 1035–1046 (1970).

    Article  Google Scholar 

  59. F. E. Heidrich, K. R. Wilson, and D. Rapp, Collinear collisions of an atom and a harmonic oscillator, J. Chem. Phys. 54, 3885–3897 (1971).

    Article  CAS  Google Scholar 

  60. W. Magnus, On the exponent solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649–673 (1954).

    Article  Google Scholar 

  61. P. Pechukas and J. C. Light, On the exponential form of time-displacement operators in quantum mechanics, J. Chem. Phys. 44, 3897–3912 (1966).

    Article  Google Scholar 

  62. K. H. Kramer and R. B. Bernstein, Sudden approximation applied to rotational excitation of molecules by atoms. I. Low-angle scattering, J. Chem. Phys. 40, 200–203 (1964).

    Article  CAS  Google Scholar 

  63. R. B. Bernstein and K. H. Kramer, Sudden approximation applied to rotational excitation of molecules by atoms. II. Scattering of polar diatomics, J. Chem. Phys. 44, 4473–4485 (1966).

    Article  CAS  Google Scholar 

  64. B. L. Van der Waerden, Sources of Quantum Mechanics, North-Holland Publishing Company, Amsterdam (1967).

    Google Scholar 

  65. I. L. Beigman, L.A. Vainshtein, and I. L. Sobel’man, Classical approximations in the theory of inelastic collisions, J. Exp. Theor. Phys. 30, 920–923 (1970).

    Google Scholar 

  66. D. Richards, private communication, (1975).

    Google Scholar 

  67. E. Kerner, Note on the forced and damped oscillator in quantum mechanics, Can. J. Phys. 36, 371–377 (1958).

    Article  Google Scholar 

  68. H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed.. The Macmillan Company, New York (1961).

    Google Scholar 

  69. R. I. Morse and R. J. LaBrecque, Collinear collisions of an atom and a Morse oscillator: An approximate semi-classical approach, J. Chem. Phys. 55, 1522–1530 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Child, M.S. (1976). Semiclassical Methods in Molecular Collision Theory. In: Miller, W.H. (eds) Dynamics of Molecular Collisions. Modern Theoretical Chemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0644-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0644-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0646-8

  • Online ISBN: 978-1-4757-0644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics