Skip to main content

Dynamics of Unimolecular Reactions

  • Chapter
Dynamics of Molecular Collisions

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 2))

Abstract

The subject of unimolecular dynamics deals with the intermolecular and intramolecular microscopic details of unimolecular reactions. Theories of unimolecular dynamics are concerned with molecular motion over potential energy surfaces and the behavior of molecular coordinates as a function of time. Most studies of unimolecular reactions have involved measurements and predictions of the rate at which an energized molecule will undergo a uni-molecular reaction. The basic postulate of all unimolecular theories is the rapidity of intramolecular vibrational energy relaxation. Experimentalists were awarded a rare opportunity to test two conflicting assumptions regarding this postulate by the simultaneous advent of the Slater(1) and Rice-Ramsperger-Kassel-Marcus (RRKM)(2) theories in the 1950s. Slater’s theory, which is dynamical, pictures a molecule as an assembly of harmonic oscillators. Within this framework vibrational energy relaxation between the normal modes is forbidden, and reaction occurs only when some coordinate, the reaction coordinate, reaches a critical extension by superposition of the various normal modes. In contrast, the RRKM theory, which is an extension by R. A. Marcus of the statistical theory developed by O. K. Rice, H. C. Ramsperger, and L. S. Kassel, assumes rapid relaxation of vibrational energy. The experimental tests overwhelmingly endorsed the RRKM theory, and the controversy involving intramolecular vibrational energy relaxation was seemingly laid to rest. It also appeared as though dynamical treatments of unimolecular reactions were unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. B. Slater, Theory of Unimolecular Reactions, Cornell University Press, Ithaca, N.Y. (1959).

    Google Scholar 

  2. R. A. Marcus, Unimolecular dissociations and free radical recombination reactions, J. Chem. Phys 20, 359–364 (1952).

    CAS  Google Scholar 

  3. J. M. Parson and Y. T. Lee, Crossed molecular beam study of F + C2H4, C2D4, J. Chem. Phys 56, 4658–4666 (1972).

    CAS  Google Scholar 

  4. J. M. Parson, K. Shobatake, Y. T. Lee, and S. A. Rice, Unimolecular decomposition of the long-lived complex formed in the reaction F + C4H8, J. Chem. Phys 59, 1402–1415 (1973).

    CAS  Google Scholar 

  5. K. Shobatake, J. M. Parson, Y. T. Lee, and S. A. Rice, Unimolecular decomposition of long-lived complexes of fluorine and substituted mono-elfins, cyclic olefins, and dienes. J. Chem. Phys 59, 1416–1426 (1973).

    CAS  Google Scholar 

  6. K. Shobatake, J. M. Parson, Y. T. Lee, and S. A. Rice, Laboratory angular dependence and the recoil-energy spectrum of the products of the reaction F+C6D6→D+C6D5F, J. Chem. Phys 59, 1427–1434 (1973).

    CAS  Google Scholar 

  7. K. Shobatake, Y. T. Lee, and S. A. Rice, Reactions of F atoms and aromatic and heterocyclic molecules: Energy distribution in the reaction complex, J. Chem. Phys 59, 1435–1448 (1973).

    CAS  Google Scholar 

  8. K. Shobatake, Y. T. Lee, and S. A. Rice, Crossed molecular beams study of the reaction F+(C2H2Cl2)→Cl+(C2H2CIF), J. Chem. Phys 59, 6104–6111 (1973).

    CAS  Google Scholar 

  9. J. M. Parson, K. Shobatake, Y. T. Lee, and S. A. Rice, Substitution reactions of fluorine atoms with unsaturated hydrocarbons: Crossed molecular beam studies of unimolecular decomposition, Discuss. Faraday Soc 55, 344–356 (1973).

    CAS  Google Scholar 

  10. P. N. Clough, J. C. Polanyi, and R. T. Taguchi, Vibrational energy distribution in HF formed by elimination from activated CH3CF3 and CH2CF2, Can. J. Chem 48, 2919–2930 (1970).

    CAS  Google Scholar 

  11. H. W. Chang, D. W. Setser, and M. J. Perona, Comparison of energy partitioning from three-centered processes. Bimolecular transfer and unimolecular elimination reactions, J. Phys. Chem 75, 2070–2072 (1971).

    Google Scholar 

  12. J. G. Moehlmann and J. D. McDonald, Vibrational energy distribution of chemically activated cycloactanone, J. Chem. Phys 59, 6683–6684 (1973).

    CAS  Google Scholar 

  13. J. G. Moehlmann, J. T. Gleaves, J. W. Hudgens, and J. D. McDonald, Infrared chemiluminescence studies of the reaction of fluorine atoms with monosubstituted ethylene compounds, J. Chem. Phys 60, 4790–4799 (1974).

    CAS  Google Scholar 

  14. J. T. Gleaves and J. D. McDonald, Infrared chemiluninescence studies of hydrogen halide elimination reactions, J. Chem. Phys 62, 1582–1583 (1975).

    CAS  Google Scholar 

  15. D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys 59, 4621–4632 (1973).

    CAS  Google Scholar 

  16. J. D. Rynbrandt and B. S. Rabinovitch, Intramolecular energy relaxation. Nonrandom decomposition of hexafluorobicyclopropyl, J. Phys. Chem 75, 2164–2171 (1971).

    Google Scholar 

  17. J. F. Meagher, K. J. Chao, J. R. Barker, and B. S. Rabinovitch, Intramolecular vibrational energy relaxation. Decomposition of a series of chemically activated fluoralkyl cyclopropanes, J. Phys. Chem 78, 2535–2543 (1974).

    CAS  Google Scholar 

  18. R. A. Marcus, Dissociation and isomerization of vibrationally excited species. III, J. Chem. Phys 43, 2658–2661 (1965).

    CAS  Google Scholar 

  19. D. L. Bunker and M. Pattengill, Monte Carlo calculations. VI. A re-evaluation of the RRKM theory of unimolecular reaction rates, J. Chem. Phys 48, 772–776 (1968).

    CAS  Google Scholar 

  20. E. V. Waage and B. S. Rabinovitch, Centrifugal effects in reaction rate theory, Chem. Rev 70, 377–387 (1970).

    CAS  Google Scholar 

  21. D. L. Bunker, RRKM theory, the CH3NC paradox, and the decomposition of hot-atom substitution products, J. Chem. Phys 57, 332–335 (1972).

    CAS  Google Scholar 

  22. D. L. Bunker, Theory of Elementary Gas Reaction Rates, Pergamon Press, Inc., Elmsford, N.Y. (1966).

    Google Scholar 

  23. K. J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill Book Company, New York (1969).

    Google Scholar 

  24. D. W. Setser, in: MTP International Review of Sciences, Physical Chemistry (J. Polanyi, ed.), Vol. 9, pp. 1–43, University Park Press, Baltimore (1972).

    Google Scholar 

  25. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, John Wiley and Sons, Inc. ( Interscience Division ), New York (1972).

    Google Scholar 

  26. W. Forst, Theory of Unimolecular Reactions, Academic Press, Inc., New York (1973).

    Google Scholar 

  27. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Company, New York (1941).

    Google Scholar 

  28. W. Forst, Methods for calculating energy level densities, Chem. Rev 71, 339–356 (1971).

    CAS  Google Scholar 

  29. D. C. Tardy, B. S. Rabinovitch, and G. Z. Whitten, Vibration-rotation energy-level density calculations, J. Chem. Phys 48, 1427–1429 (1968).

    CAS  Google Scholar 

  30. W. L. Hase, Theoretical configuration for ethane decorposition and methyl radical recombination, J. Chem. Phys 57, 730–733 (1972).

    CAS  Google Scholar 

  31. W. H. Wong and R. A. Marcus, Concept of minimum state density in the activated complex theory of bimolecular reactions, J. Chem. Phys 55, 5625–5629 (1971).

    CAS  Google Scholar 

  32. H. S. Johnston, Gas Phase Reaction Rate Theory, The Ronald Press Company, New York (1966).

    Google Scholar 

  33. M. Quack and J. Troe, Specific rate constants of unimolecular processes. II. Adiabatic channel model, Ber. Bunsenges. Phys. Chem 78, 240–252 (1974).

    CAS  Google Scholar 

  34. R. C. Baetzold and D. J. Wilson, Classical unimolecular rate theory. II. Effect of the distribution of initial conditions, J. Phys. Chem 68, 3141–3145 (1964).

    CAS  Google Scholar 

  35. E. V. Waage and B. S. Rabinovitch, Simple and accurate approximation for the centrifugal factor in RRKM theory, J. Chem. Phys 52, 5581–5584 (1970).

    CAS  Google Scholar 

  36. H. S. Johnston and P. Goldfinger, Theoretical interpretation of reactions occuring in photoclorination, J. Chem. Phys 37, 700–709 (1962).

    CAS  Google Scholar 

  37. K. J. Mintz and R. J. Cvetanovic, Arrhenius A factors of unimolecular decomposition of alcohols formed by insertion of O(D2) atoms into the C-H bonds of paraffins, Can. J. Chem 51, 3386–3393 (1973).

    Google Scholar 

  38. W. L. Hase, R. L. Johnson, and J. W. Simons, The decomposition of chemically activated n-butane, isopentane, neohexane, and n-pentane and the correlation of their decomposition rates with radical recombination rates, Int. J. Chem. Kinet 4, 1–35 (1972).

    CAS  Google Scholar 

  39. F. B. Growcock, W. L. Hase, and J. W. Simons, Kinetics of chemically activated ethane, Int. J. Chem. Kinet 5, 77–92 (1973).

    CAS  Google Scholar 

  40. W. L. Hase, C. J. Mazac, and J. W. Simons, Decomposition kinetics of chemically activated dimethylsilane and ethylsilane, J. Am. Chem. Soc 95, 3454–3459 (1973).

    CAS  Google Scholar 

  41. H. O. Pritchard, R. G. Sowden, and A. F. Trotman-Dickenson, Studies in energy transfer. II. The isomerization of cyclopropane—A quasi-unimolecular reaction, Proc. R. Soc. London Ser. A 217, 563–571 (1953).

    CAS  Google Scholar 

  42. T. S. Chambers and G. B. Kistiakowsky, Kinetics of the thermal isomerization of cyclopropane, J. Am. Chem. Soc. 56, 399–405 (1934)

    Google Scholar 

  43. M. C. Lin and K. J. Laidler, Fall-off behavior and kinetic isotope-effects in reactions of cyclic hydrocarbons, Trans. Faraday Soc 64, 927–944 (1968).

    CAS  Google Scholar 

  44. P. Jeffers, D. Lewis, and M. Sarr, Cyclopropane structural isomerization in shock waves, J. Phys. Chem 77, 3037–3041 (1973).

    CAS  Google Scholar 

  45. F. W. Schneider and B. S. Rabinovitch, The thermal unimolecular isomerization of methyl isocyanide. Fall-off behavior, J. Am. Chem. Soc 84, 4215–4230 (1962).

    CAS  Google Scholar 

  46. F. W. Schneider and B. S. Rabinovitch, The unimolecular isomerization of methyl-d3 isocyanide. Statistical-weight inverse secondary intermolecular kinetic isotope effects in nonequilibrium thermal systems, J. Am. Chem. Soc 85, 2365–2370 (1963).

    CAS  Google Scholar 

  47. B. S. Rabinovitch, P. W. Gilderson, and F. W. Schneider, The thermal unimolecular isomerization of methyl-d1 isocyanide. Fall-off and inverse isotope effect, J. Am. Chem. Soc 87, 158–160 (1965).

    CAS  Google Scholar 

  48. K. M. Maloney and B. S. Rabinovitch, The thermal isomerization of isocyanide. Variation of molecular parameters, Ethyl isocyanide, J. Phys. Chem. 73, 1652–1666 (1969).

    CAS  Google Scholar 

  49. K. M. Maloney, S. P. Pavlou, and B. S. Rabinovitch, Kinetic isotope effects in nonequilibrium thermal unimolecular systems. Ethyl isocyanide-d5, J. Phys. Chem 73, 2756–2760 (1969).

    CAS  Google Scholar 

  50. J. V. Michael and G. N. Suess, Application of RRKM theory to the chemical and thermal activation of ethyl radicals, J. Chem. Phys 58, 2807–2812 (1973).

    Google Scholar 

  51. K. J. Laidler and J. C. Polanyi, Theories of the kinetics of bimolecular reactions, in: Progress in Reaction Kinetics (G. Porter, ed.), Vol. 3, pp. 1–61, Pergamon Press, Inc., Elmsford, N.Y. (1965).

    Google Scholar 

  52. E. Tschuikow-Roux, Critical bond length in radical combination and unimolecular dissociation reactions, J. Phys. Chem 72, 1009–1011 (1968).

    CAS  Google Scholar 

  53. C. W. Larson and B. S. Rabinovitch, Competitive unimolecular decomposition of alkyl radicals. Tertiary butyl rupture, J. Chem. Phys 52, 5181–5183 (1970).

    CAS  Google Scholar 

  54. K. Dees, D. W. Setser, and W. G. Clark, The reactions of methylene with 1,2-dichloroethane and nonequilibrium unimolecular HCI elimination from 1,3-dichloropropane, 1,4dichlorobutane, and 1-chloropropane, J. Phys. Chem 75, 2231–2240 (1971).

    Google Scholar 

  55. K. C. Kim and D. W. Setser, Unimolecular reactions and energy partitioning. Three-and four-centered elimination reactions of chemically activated 1,1,2-trichloroethane-do-d1 and d2, J. Phys. Chem 78, 2166–2179 (1974).

    CAS  Google Scholar 

  56. F. S. Rowland, in: MTPlnternational Review of Sciences, Physical Chemistry (J. Polanyi, ed.), Vol. 9, pp. 109–133, University Park Press, Baltimore (1972).

    Google Scholar 

  57. K. A. Krohn, N. J. Parks, and J. W. Root, Chemistry of nuclear recoil 18F atoms. VI. Approximate energetics and molecular dynamics in CH3CF3, J. Chem. Phys 55, 5785–5794 (1971).

    CAS  Google Scholar 

  58. C. C. Chou and W. L. Hase, Rice—Ramsperger—Kassel—Marcus theory applied to decomposition of hot atom substitution products. c-C4H7T and c-C4D7T, J. Phys. Chem 78, 2309–2315 (1974).

    CAS  Google Scholar 

  59. J. N. Butler and G. B. Kistiakowsky, Reactions of methylene. IV. Propylene and cyclopropane, J. Am. Chem. Soc 82, 759–765 (1960).

    CAS  Google Scholar 

  60. A. F. Trotman-Dickenson, Gas Kinetics, Butterworths, London (1955).

    Google Scholar 

  61. S. C. Chan, B. S. Rabinovitch, J. T. Bryant, L. D. Spicer, T. Fujimoto, Y. N. Lin, and S. P. Pavlou, Energy transfer in thermal methyl isocyanide isomerization. A comprehensive investigation, J. Phys. Chem 74, 3160–3176 (1970).

    CAS  Google Scholar 

  62. W. G. Valance and E. W. Schlag, Nonequilibrium effects in unimolecular reaction theory, J. Chem. Phys 45, 4280–4288 (1966).

    CAS  Google Scholar 

  63. V. J. Troe and H. G. Wagner, Unimolecular reactions in thermal systems, Ber. Bunsenges. Phys. Chem 71, 937–979 (1967).

    CAS  Google Scholar 

  64. D. C. Tardy and B. S. Rabinovitch, Collisional energy transfer in thermal unimolecular systems. Dilution effects and fall-off region, J. Chem. Phys 48, 1282–1301 (1968).

    CAS  Google Scholar 

  65. S. P. Pavlou and B. S. Rabinovitch, Energy transfer in thermal isocyanide isomerization. Noble gases in the ethyl isocyanide system, J. Phys. Chem 75, 1366–1374 (1971).

    Google Scholar 

  66. M. Hoare, Steady state unimolecular processes in multilevel systems, J. Chem. Phys 38, 1630–1635 (1963).

    CAS  Google Scholar 

  67. H. W. Chang, N. L. Craig, and D. W. Setser, Nonequilibrium unimolecular reactions and collisional deactivation of chemically activated fluoroethane and 1,1,1-trifluoroethane, J. Phys. Chem 76, 954–963 (1972).

    CAS  Google Scholar 

  68. J. D. Rynbrandt and B. S. Rabinovitch, Collisional transition probability distributions for deactivation of vibrationally excited dimethylcyclopropane, J. Phys. Chem 74, 1679–1685 (1970).

    CAS  Google Scholar 

  69. J. H. Georgakakos and B. S. Rabinovitch, Collision transfer of vibrational energy from highly excited polyatomics. Transfer probabilities and cross sections for inefficient bath gases, J. Chem. Phys 56, 5921–5930 (1972).

    CAS  Google Scholar 

  70. D. W. Setser and E. E. Siefert, Vibrational energy transfer probabilities of highly vibration-ally excited dichloroethane with argon, krypton, xenon, and sulfur hexafluoride, J. Chem. Phys 57, 3623–3628 (1972).

    CAS  Google Scholar 

  71. Von S. H. Luu and J. Troe, Photoisomerization of cycloheptatriene, II. Temperature dependence of collisional energy transfer, Ber. Bunsenges. Phys. Chem 78, 766–773 (1974).

    CAS  Google Scholar 

  72. Y. N. Lin and B. S. Rabinovitch, A simple quasi-accommodation model of vibrational energy transfer. Low pressure thermal methyl isocyanide isomerization, J. Phys. Chem 74, 3151–3159 (1970).

    CAS  Google Scholar 

  73. M. L. Dutton, D. L. Bunker, and H. H. Harris, Two familiar gas reactions at suprahigh pressure, J. Phys. Chem 76, 2614–2617 (1972).

    CAS  Google Scholar 

  74. J. Aspen, N. A. Khawaja, J. Reardon, and D. J. Wilson, Pyrolysis of ethylcyclobutane in the gas phase at high pressures, J. Am. Chem. Soc 91, 7580–7582 (1969).

    Google Scholar 

  75. R. E. Harrington, B. S. Rabinovitch, and H. M. Frey, Decomposition of activated sec-butyl radicals from different sources and unimolecular reaction theory, J. Chem. Phys 33, 1271–1272(1960).

    Google Scholar 

  76. I. Oref, D. Schuetzle, and B. S. Rabinovitch, Unimolecular decomposition and intramolecular energy relaxation in the suprahigh-pressure region, J. Chem. Phys 54, 575–578 (1971).

    CAS  Google Scholar 

  77. E. Thiele and D. J. Wilson, Anharmonicity in unimolecular reactions, J. Chem. Phys 35, 1256–1263 (1961).

    CAS  Google Scholar 

  78. R. J. Harter, E. B. Alterman, and D. J. Wilson, Anharmonic effects in unimolecular rate theory. Vibrations and collisions of simple polyatomic systems, J. Chem. Phys 40, 2137–2145 (1964).

    CAS  Google Scholar 

  79. N. C. Hung and D. J. Wilson, Anharmonic effects in unimolecular rate theory. Dynamics of a rotating anharmonic triatomic molecule, J. Chem. Phys 38, 828–831 (1963).

    CAS  Google Scholar 

  80. N. C. Hung, Rotational-vibrational energy transfer. Dynamics of a rotating anharmonic four-atom molecule, J. Chem. Phys 57, 5202–5215 (1972).

    CAS  Google Scholar 

  81. R. C. Baetzold and D. J. Wilson, Classical unimolecular rate theory. III. Effect of initial conditions on lifetime-distributions, J. Chem. Phys 43, 4299–4303 (1965).

    CAS  Google Scholar 

  82. D. L. Bunker, Monte Carlo calculations. IV. Further studies of unimolecular decomposition, J. Chem. Phys 40, 1946–1957 (1964).

    CAS  Google Scholar 

  83. H. H. Harris and D. L. Bunker, Methyl isocyanide is probably a non-RRKM molecule, Chem. Phys. Lett 11, 433–436 (1971).

    CAS  Google Scholar 

  84. D. H. Loskiw, C. F. Bender, and H. F. Schaefer III, Some features of the CH3NC→CH3CN potential surface, J. Chem. Phys 57, 4509–4511 (1972).

    Google Scholar 

  85. W. L. Hase and Da-Fei Feng, Classical trajectory study of the unimolecular decomposition of H-C=C-Cl, H-C=C-H and Cl-C-C-Cl, J. Chem. Phys 61, 4690–4699 (1974).

    CAS  Google Scholar 

  86. K. Evans, R. Scheps, S. A. Rice, and D. Heller, Primary photochemical and photophysical processes in chloro-and bromoacetylene, Chem. Soc. Faraday Trans 269, 856–880 (1973).

    Google Scholar 

  87. C. E. Klots, Quasi-equilibrium theory of ionic fragmentation: Further considerations, Z. Naturforsch. Teil A 27, 553–561 (1972).

    CAS  Google Scholar 

  88. S. A. Safron, N. D. Weinstein, D. R. Herschbach, and J. C. Tully, Transition state theory for collision complexes: Product translational energy distributions, Chem. Phys. Lett 12, 564–568 (1972).

    CAS  Google Scholar 

  89. R. A. Marcus, On the theory of energy distributions of products of molecular beam reactions involving transient complexes, J. Chem. Phys 62, 1372–1384 (1975).

    CAS  Google Scholar 

  90. E. L. Spotz, W. A. Seitz, and J. L. Franklin, Translational energy of fragments of ion decomposition and totality of states functions, J. Chem. Phys 51, 5142–5148 (1969).

    CAS  Google Scholar 

  91. K. C. Kim, J. H. Beynon, and R. G. Cooks, Energy partitioning by mass spectrometry: chloroalkanes and chloroalkenes, J. Chem. Phys 61, 1305–1314 (1974).

    CAS  Google Scholar 

  92. E. Fermi, J. Pasta, and S. Ulam, Studies of non linear problems, in: Enrico Fermi: Collected Papers, Vol. II, pp. 978–988, University of Chicago Press, Chicago (1965).

    Google Scholar 

  93. G. H. Walker and J. Ford, Amplitude instability and ergodic behavior for conservative nonlinear oscillator systems, Phys. Rev. A 188, 416–432 (1969).

    Google Scholar 

  94. B. Barbanis, On the isolating character of the third integral in a resonance case, Astron. J 71, 415–424 (1966).

    Google Scholar 

  95. M. Henon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astron. J 69, 73–79 (1964).

    Google Scholar 

  96. K. C. Mo, Theoretical prediction for the onset of widespread instability in conservative nonlinear oscillator systems, Physica 57, 445–454 (1972).

    Google Scholar 

  97. K. S. J. Nordholm and S. A. Rice, Quantum ergodicity and vibrational relaxation in isolated molecules, J. Chem. Phys 61, 203–223 (1974).

    Google Scholar 

  98. S. Nordholm and S. A. Rice, Quantum ergodicity and vibrational relaxation in isolated molecules. II.,l-Independent effects and relaxation to the asymptotic limit, J. Chem. Phys 61, 768–779 (1974).

    CAS  Google Scholar 

  99. J. W. Brauner and D. J. Wilson, Intramolecular energy transfer in unimolecular reactions. II. A weakly-coupled-oscillators model, J. Phys. Chem 67, 1134–1138 (1963).

    CAS  Google Scholar 

  100. W. M. Gelbart, S. A. Rice, and K. F. Freed, Stochastic theory of vibrational relaxation and dissociation, J. Chem. Phys 52, 5718–5732 (1970).

    CAS  Google Scholar 

  101. W. M. Gelbart, S. A. Rice, and K. F. Freed. Random matrix theory and the master equation for finite systems, J. Chem. Phys 57, 4699–4712 (1972).

    CAS  Google Scholar 

  102. K. G. Kay, Theory of vibrational relaxation in isolated molecules, J. Chem. Phys 61, 5205–5220 (1974).

    CAS  Google Scholar 

  103. W. H. Miller, The semiclassical nature of atomic and molecular collisions, Acc. Chem. Res 4, 161–167 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hase, W.L. (1976). Dynamics of Unimolecular Reactions. In: Miller, W.H. (eds) Dynamics of Molecular Collisions. Modern Theoretical Chemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0644-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0644-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0646-8

  • Online ISBN: 978-1-4757-0644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics