Advertisement

Chemiluminescence Analysis for Trace Elements

  • W. Rudolf Seitz
  • David M. Hercules

Abstract

Several metal ions catalyze the oxidation of luminol (5-amino-2,3-dihydrophthalazine-1,4-dione) by hydrogen peroxide in basic aqueous solution. This extensively studied reaction is one of the most efficient chemiluminescent reactions known (1–3). A few catalysts are effective even in the absence of hydrogen peroxide.

Keywords

Calculated Response Order Component EDTA Complex Order Response Chemi Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. O. Albrecht, Z. Phys. Chem., 136, 321 (1928).Google Scholar
  2. 2.
    E. H. White, “A Symposium on Light and Life”, W. D. McElroy and B. Glass, Ed., The John Hopkins Press, Baltimore, Md., 1961, p. 183.Google Scholar
  3. 3.
    F. McCapra, Quart. Rev., 20, 485 (1966).CrossRefGoogle Scholar
  4. 4.
    A. K. Babko and N. M. Lukovskaya, Zh. Anal. Khim., 17, 50 (1962).Google Scholar
  5. 5.
    A. K. Babko and L. I. Dubovenko, Z. Anal. Chem., 200, 428 (1964).CrossRefGoogle Scholar
  6. 6.
    A. K. Babko and N. M. Lukovskaya, Zavod. Lab., 29, 404 (1963).Google Scholar
  7. 7.
    A. K. Babko and I. E. Kalinichenko, Ukr. Khim. Zh., 31, 1316 (1965).Google Scholar
  8. 8.
    W. Rudolf Seitz, W. W. Suydam and D. M. Hercules, Anal. Chem., 44, 957 (1972).CrossRefGoogle Scholar
  9. 9.
    W. R. Seitz and D. M. Hercules, Anal. Chem., 44, 2143 (1972).CrossRefGoogle Scholar
  10. 10.
    H. A. Laitinen, Chemical Analysis, p. 446, Mc íGraw-Hill, New York (1960).Google Scholar
  11. 11.
    F. H. Westheimer, Chem. Revs. 45, 419 (1949).CrossRefGoogle Scholar
  12. 12.
    O. Ojima and R. Iwaki, Nippon Kagaka Zasshi, 78, 1632–5 (1957).CrossRefGoogle Scholar
  13. 13.
    R. E. Hamm, J. Amer. Chem. Soc., 75, 5670 (1953).CrossRefGoogle Scholar
  14. 14.
    R. Li, unpublished results, University of Georgia, 1972.Google Scholar
  15. 15.
    W. Merts, Physiological Reviews, 49, 168 (1969).Google Scholar
  16. 16.
    Standard Methods, APHA, 13th ed 71971).Google Scholar
  17. 17.
    K. A. Krause, Trace Analysis, pp 34–101, ed. J. H. Yoe and H. J. Koch, John Wiley and Sons, Inc., New York (1957).Google Scholar
  18. 18.
    K. A. Krause and G. E. Moore, J. Amer. Chem. Soc.,75, 1460 (1953).CrossRefGoogle Scholar
  19. 19.
    G. E. Moore and K. A. Krause, J. Amer. Chem. Soc., 74, 843 (1952).CrossRefGoogle Scholar
  20. 20.
    M. Neary, unpublished results, University of Georgia, 1972.Google Scholar
  21. 21.
    Willard, Furman and Bricker, Elements of Quantitative Analysis, pp256258, 4th edition, D. Van Nostrand Co., Inc., Princeton, New Jersey (1956).Google Scholar
  22. 22.
    A. K. Babko, L. V. Markova and N. M. Lukovskaya, Zh. Anal. Khim. 23, 401–6 (1968).Google Scholar
  23. 23.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Chapter 22, Interscience (1962).Google Scholar
  24. 24.
    J. A. Morgan, Quart. Rev. Chem. Soc., 8, 123 (1954).CrossRefGoogle Scholar
  25. 25.
    D. Liederman, J. E. Bowen and O. I. Milner, Anal. Chem., 30, 1543 (1958).CrossRefGoogle Scholar
  26. 26.
    F. P. Terraglio and R. M. Manganelli, Anal. Chem., 34, 675 (1962).CrossRefGoogle Scholar
  27. 27.
    W. Hardy, unpublished results, University of Georgia, 1972.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • W. Rudolf Seitz
    • 1
  • David M. Hercules
    • 2
  1. 1.Southeast Environmental Research LaboratoryNERC, Corvallis, EPAAthensUSA
  2. 2.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations