Oxygen in Chemiluminescence. A Competitive Pathway of Dioxetane Decomposition Catalyzed by Electron Donors

  • Daniel Chia-Sen Lee
  • Thérèse Wilson


It is striking and well known that most of the familiar cases of chemiluminescence in solution involve oxygen, bioluminescence being the foremost example (1). Yet it is clear that not one particular state of the oxygen molecule, nor one single mechanism can be given credit for this prevalence. Ground state triplet oxygen is involved in the many free-radical autoxidation processes which emit low yield luminescence. The step responsible here for the generation of electronically excited products is probably the disproportionation of two peroxy radicals, in what may be a concerted Russell chain termination (2). Singlet oxygen is itself directly the origin of the remarkable red chemiluminescence attending the heterolytic decomposition of hydrogen peroxide. Here the light emitting step is a unique energy pooling process combining the energies of two O2(lg) into one double-size quantum (3). Examples of such a pooling process followed by energy transfer to a fluorescer have been observed, but it is evident that such processes will have low quantum yields and can hardly be a general mechanism of chemiluminescence, as envisioned by Khan and Kasha (4). However, singlet oxygen is efficient at forming peroxides (3c,d), which are potential sources of luminescence. The superoxide ion is the likely intermediate in another class of peroxidation and in the decomposition of hydrogen peroxide catalyzed by some metal ions or by peroxidases (5). The dismutation of O2 may generate singlet oxygen (6), but here again such a step would give only very low yields of luminescence.


Singlet Oxygen Generate Singlet Oxygen Ethyl Formate Uncatalyzed Reaction Relative Quantum Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    la. F. McCapra, Quart. Rev. Chem. Soc. 20, 485 (1966).CrossRefGoogle Scholar
  2. 1b.
    K. D. Gunderman, Angew. Chem. Int. Ed. Engl. 4, 566 (1965).Google Scholar
  3. 1c.
    J. W. Hastings, Ann. Rev. Biochem. 37, 597 (1968).CrossRefGoogle Scholar
  4. 2a.
    V. A. Belyakov and R. F. Vassilev, Photochem. Photobiol. 11, 179 (1970).CrossRefGoogle Scholar
  5. 2b.
    R. E. Kellogg, J. Am. Chem. Soc. 91, 5433 (1969).CrossRefGoogle Scholar
  6. 2c.
    G. A. Russell, Ibid. 79, 3871 (1957).Google Scholar
  7. 3a.
    A. U. Khan and M. Kasha, J. Am. Chem. Soc. 92, 3293 (1970).CrossRefGoogle Scholar
  8. 3b.
    E. A. Ogryzlo, in Photobiology (A. C. Giese, ed.), Vol. V, pp. 35–47 (1970).Google Scholar
  9. 3c.
    T. Wilson and J. W. Hastings, Ibid., pp. 49–95.Google Scholar
  10. 3d.
    D. R. Kearns, Chem. Rev. 71, 395 (1971).CrossRefGoogle Scholar
  11. 4.
    A. U. Khan and M. Kasha, J. Am. Chem. Soc. 88, 1574 (1966).CrossRefGoogle Scholar
  12. 5a.
    P. F. Knowles, J. F. Gibson, F. M. Pick and R. C. Bray, Biochem. J. 111, 53 (1969).Google Scholar
  13. 5b.
    I. Fridovich, Accounts Chem. Res. 5, 321 (1972).CrossRefGoogle Scholar
  14. 5c.
    I. Yamazaki, L. H. Yokota and R. Nakajuma, in Oxidases and Related Redox Systems ( T. E. King, H. S. Mason and M. Morrison, eds.) Wiley, N. Y. (1965), p. 485.Google Scholar
  15. 6.
    R. M. Arneson, Arch. Biochem. Biophys. 136, 352 (1970).CrossRefGoogle Scholar
  16. 7a.
    F. McCapra, Chem. Comm. 155 (1968).Google Scholar
  17. 7b.
    M. M. Rauhut, Accounts Chem. Res. 2, 80 (1969).CrossRefGoogle Scholar
  18. 8.
    F. McCapra, Pure Applied Chem. 24, 611 (1970).CrossRefGoogle Scholar
  19. 9a.
    K. R. Kopecky, J. H. van de Sande and C. Mumford, Can. J. Chem. 46, 25 (1968).CrossRefGoogle Scholar
  20. 9b.
    K. R. Kopecky and C. Mumford, Ibid. 47, 709 (1969).Google Scholar
  21. 9c.
    W. H. Richardson and V. F. Hodge, J. Am. Chem. Soc. 93, 3996 (1971).CrossRefGoogle Scholar
  22. 10a.
    P. D. Bartlett and A. P. Schaap, J. Am. Chem. Soc. 92, 3223 (1970).CrossRefGoogle Scholar
  23. 10b.
    S. Mazur and C. S. Foote, Ibid. 92, 3225 (1970).Google Scholar
  24. 11.
    P. R. Story, E. A. Whited and J. A. Alford, Ibid. 94, 2142 (1972).Google Scholar
  25. 12.
    W. H. Richardson, M. B. Yelvington and H. E. O’Neal, Ibid. 94, 1619 (1972).Google Scholar
  26. 13.
    K. R. Kopecky, quoted by O’Neal and Richardson, ref. 14.Google Scholar
  27. 14.
    H. E. O’Neal and W. H. Richardson, J. Am. Chem. Soc. 92, 6553 (1970).CrossRefGoogle Scholar
  28. 15.
    N. J. Turro and P. Lechten, Ibid. 94, 2886 (1972).Google Scholar
  29. 16.
    T. Wilson and A. P. Schaap, Ibid. 93, 4126 (1971).Google Scholar
  30. 17a.
    A.P. Schaap and N. Tontapanish, “Symposium on Oxidation by Singlet Oxygen,” Am. Chem. Soc., Washington, D. C., Vol. 16, No. 4, 1971, p. A78.Google Scholar
  31. 17b.
    A. P. Schaap, personal communication.Google Scholar
  32. 18.
    A. P. Schaap, Tetrahedron Lett., 1757 (1971).Google Scholar
  33. 19.
    J. H. Heringa, J. Strating, H. Wynberg and W. Adam, Tetrahedron Lett., 169 (1972).Google Scholar
  34. 20.
    W. Adam and J. C. Liu, J. Am. Chem. Soc. 94, 2894 (1972).CrossRefGoogle Scholar
  35. 21a.
    E. H. White, J. Wiecko and D. R. Roswell, Ibid. 91, 5194 (1969)Google Scholar
  36. 21b.
    E. H. White, J. Wiecko and D. R. Roswell, Ibid. 91, 5194 (1969).Google Scholar
  37. 21c.
    P. D. Wildes and E. H. White, Ibid. 93, 6286 (1971).Google Scholar
  38. 22.
    A. Weller, Pure Appl. Chem. 16, 115 (1968), and references therein.Google Scholar
  39. 23.
    G. N. Taylor, Chem. Phys. Lett. 10, 355 (1971).CrossRefGoogle Scholar
  40. 24.
    R. S. H. Liu and D. M. Gale, J. Am. Chem. Soc. 90, 1897 (1968).CrossRefGoogle Scholar
  41. (25a).
    G. A. Davis and S. G. Cohen, Chem. Comm. 622 (1970);Google Scholar
  42. (25b).
    I. E. Kochevar and P. J. Wagner, J. Am. Chem. Soc. 94, 3859 (1972);CrossRefGoogle Scholar
  43. (25c).
    J. B. Guttenplan and S. G. Cohen, Ibid. 94, 4040 (1972), and references therein.Google Scholar
  44. (26a).
    W. A. Pryor, Free Radicals (McGraw-Hill Book Co., New York, 1966), pp. 98–99, and references therein.Google Scholar
  45. (26b).
    K. Tokumaru and O. Simamura, Bull. Chem. Soc. Japan 36, 333 (1963).CrossRefGoogle Scholar
  46. 27.
    R. M. Ellam and J. M. Padbury, Chem. Comm., 1094 (1971).Google Scholar
  47. 28.
    P. D. Bartlett and G. D. Mendenhall, unpublished results.Google Scholar
  48. 29.
    K. Tokumaru and O. Simamura, Bull. Chem. Soc. Japan 36, 333 (1963).CrossRefGoogle Scholar
  49. 30.
    Comparable to the solvent effects on the rate constants for quenching of naphthalene fluorescence by conjugated dienes, observed by G. N. Taylor and G. S. Hammond, J. Am. Chem. Soc. 94, 3684 (1972).Google Scholar
  50. 31.
    D. R. Kearns, J. Am. Chem. Soc. 91, 6554 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • Daniel Chia-Sen Lee
    • 1
  • Thérèse Wilson
    • 1
  1. 1.The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations