Cation-Anion Annihilation of Naphthalene, Anthracene, and Tetracene

  • G. J. Hoytink


A qualitative study has been made of the cation-anion annihilation in polar solvents for the hydrocarbons naphthalene, anthracene and tetracene. The reaction leads to a final state in which one of the two molecules occurs in the triplet state or the lowest singlet excited state. The crossing from the initial to the final state may take place by a resonance or a non-resonance electron transfer depending on the location of the excited state of the molecule. For naphthalene one finds two very efficient reactions both governed by resonance transfer one of which leads to the triplet and the other to the lowest excited singlet. For anthracene and tetracene the most efficient reaction involves a non-resonance transfer to a final state in which one of the two molecules occurs in the triplet state.

The quenching of triplet molecules by the cations and anions can have a very unfavourable effect on the quantum yield of the annihilation process.


Vibrational Relaxation Annihilation Process Lower Triplet State Triplet Molecule Nuclear Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. C. Werner, J. Chang and D. M. Hercules, J. Amer. Chem. Soc., 92, 763 (1970).CrossRefGoogle Scholar
  2. D. M. Hercules, “Physical Methods of Chemistry”, Vol. 1, Part IIB, A. Weissberger and B. Rossiter, eds. ( Wiley, New York, 1971 ), page 257.Google Scholar
  3. E. A. Chandross and F. I. Sonntag, J. Amer. Chem. Soc., 88, 1089 (1966).CrossRefGoogle Scholar
  4. E. A. Chandross, Trans. N. Y. Acad. Sci., series II, 31, 571 (1969)Google Scholar
  5. A. Zweig, Advances in Photochemistry, 6, 425 (1968).CrossRefGoogle Scholar
  6. A. Zweig, D. L. Maricle, J. S. Brinen and A. H. Maurer, J. Amer. Chem. Soc., 89, 473 (1967).CrossRefGoogle Scholar
  7. A. J. Bard, K. S. C. Santhanam, S. A. Cruser and L. R. Faulkner, “Fluorescence: Theory, Instrumentation and Practice”, G. G. Guilbault, ed., ( Marcel Dekker, New York, 1967 ) Chapter 14.Google Scholar
  8. L. R. Faulkner and A. J. Bard, J. Amer. Chem. Soc., 90, 6284 (1968).CrossRefGoogle Scholar
  9. C. A. Parker and G. D. Short, Trans. Faraday Soc., 36, 2618 (1967).CrossRefGoogle Scholar
  10. M. Sano and F. Egusa, Bull. Chem. Soc. Japan, 41, 1490 (1968). K. Mori, N. Yamamoto and H. Tsubomura, Bull. Chem. Soc. Japan, 44, 2661 (1971). and related papers cited in the above referencesGoogle Scholar
  11. 2.
    G. J. Hoytink, Discuss. Faraday Soc., 45, 14 (1968).CrossRefGoogle Scholar
  12. 3.
    W. Siebrand and D. F. Williams, J. Chem. Phys., 49, 1860 (1968).CrossRefGoogle Scholar
  13. 4.
    W. Siebrand, J. Chem. Phys., 47, 2411 (1967).CrossRefGoogle Scholar
  14. 5.
    R. L. de Groot and G. J. Hoytink, J. Chem. Phys., 46, 4524 (1967).CrossRefGoogle Scholar
  15. 6.
    P. E. Kellogg, J. Chem. Phys., 44, 411 (1966).CrossRefGoogle Scholar
  16. 7.
    R. A. Marcus, J. Chem. Phys., 43, 679 (1965).CrossRefGoogle Scholar
  17. 8.
    R. A. Marcus, J. Chem. Phys., 43, 2654 and references cited therein.Google Scholar
  18. 9.
    G. W. Robinson and R. P. Frosch, J. Chem. Phys., 37, 1962 (1962); ibid. 38, 1187 (1963).Google Scholar
  19. 10.
    G. J. Hoytink, Accounts Chem. Res., 2, 114 (1969).Google Scholar
  20. 11.
    G. J. Hoytink, J. Pure Appl. Chem., 11, 393 (1965).CrossRefGoogle Scholar
  21. 12.
    W. Siebrand, J. Chem. Phys., 44, 4055 (1966).CrossRefGoogle Scholar
  22. 13.
    J. Langelaar, G. Jansen, R. P. H. Rettschnick and G. J. Hoytink, Chem. Phys. Letters, 12, 86 (1971).CrossRefGoogle Scholar
  23. 14.
    P. Balk, S. de Bruijn and G. J. Hoytink, Rec. Tray. Chim. Pays Bas., 76, 907 (1957).CrossRefGoogle Scholar
  24. 15.
    K. H. J. Buschow and G. J. Hoytink, J. Chem. Phys., 40, 2501 (1964), and papers cited therein.Google Scholar
  25. 16.
    K. de Groot, L. P. Cary and R. C. Jarnagin, J. Chem. Phys., 48, 5280 (1968).CrossRefGoogle Scholar
  26. 17.
    A. Weller and K. Zachariasse, Chem. Phys. Letters, 10, 161 (1971). K. Zachariasse, Thesis, Free University, Amsterdam 7972), and papers cited therein.Google Scholar
  27. 18.
    Landolt Bornstein II. Band, 6. Teil I (1959).Google Scholar
  28. 19.
    B. Brocklehurst and R. D. Russell, Trans. Faraday Soc., 65, 2159 (1969), with references to papers by other authors.Google Scholar
  29. A detailed kinetic analysis of the entire process of electrochemiluminescence has recently been made by R. Bezman and L. R. Faulkner, J. Amer. Chem. Soc., 94, 3699 (1972).Google Scholar
  30. This is a revised version of an earlier study by S. W. Feldberg, J. Phys. Chem., 70, 3928 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • G. J. Hoytink
    • 1
  1. 1.Department of ChemistryThe UniversitySheffieldEngland

Personalised recommendations