Disposition of Catecholamine-Derived Alkaloids in Mammalian Systems

  • Virginia E. Davis
  • Jesse L. Cashaw
  • K. D. McMurtrey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 59)


The biosynthesis of alkaloids has long been considered unique to plants. Evidence evolving in recent years, however, indicates that mammalian systems may also possess this capability and the potential pharmacological consequences of biosynthesized alkaloids may be of great significance.


Mammalian System TRIMETHYLSILYL Ether Alkaloid Biosynthesis Methylene Unit Isoquinoline Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yamanaka, Y., Walsh, M.J. and Davis, V.E.: Salsolinol, an alkaloid derivative of dopamine formed in vitro during alcohol metabolism. Nature 227: 1143–1144, 1970.CrossRefGoogle Scholar
  2. 2.
    Cohen, G. and Collins, M.: Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167: 1749 1751, 1970.Google Scholar
  3. 3.
    Greenberg, R.S. and Cohen, G.: Tetrahydroisoquinoline alkaloids: stimulated secretion from the adrenal medulla. J. Pharmacol. Exp. Therap. 184: 119–128, 1973.Google Scholar
  4. 4.
    Cohen, G.: A role for tetrahydroisoquinoline alkaloids as false adrenergic neurotransmitters in alcoholism. In M.M. Gross (ed.), Alcohol Intoxication and Withdrawal, Experimental Studies. Adv. Exp. Biol. Med. 35: 33–44, New York: Plenum Press. 1973.Google Scholar
  5. 5.
    Mytilineou, C., Cohen, G. and Barrett, R.: Tetrahydroisoquinoline alkaloids: uptake and release by adrenergic nerves in vivo. Eur. J. Pharmacol. 25: 390–401, 1974.CrossRefGoogle Scholar
  6. 6.
    Davis, V.E.: Alcohol and aberrant metabolism of biogenic amines. In M.K. Roach, W.M. Mclssac and P.J. Creaven (eds.), Biological Aspects of Alcohol, pp. 293–312. Austin: University of Texas Press. 1971.Google Scholar
  7. 7.
    Davis, V.E. and Walsh, M.J.: Alcohol, amines and alkaloids: a possible biochemical basis for alcohol addiction. Science 167: 1005–1007, 1970.CrossRefGoogle Scholar
  8. 8.
    Davis, V.E., Walsh, M.J. and Yamanaka, Y.: Augmentation of alkaloid formation from dopamine by alcohol and acetaldehyde in vitro. J. Pharmacol. Exp. Ther. 174: 401–412, 1970.Google Scholar
  9. 9.
    Davis, V.E. and Walsh, M.J.: Effect of ethanol on neuroamine metabolism. In Y. Isreal and J. Mardones (eds.), Biological Basis of Alcoholism, pp. 73–102. New York: Wiley-Interscience. 1971.Google Scholar
  10. 10.
    Davis, V.E.: Neuroamine-derived alkaloids: a possible common denominator in alcoholism and related drug dependencies. Ann. N.Y. Acad. Sci. 215: 111–115, 1973.CrossRefGoogle Scholar
  11. 11.
    Davis, V.E., Cashaw, J.L., McLaughlin, B.R. and Hamlin, T.A.: Alternation of norepinephrine metabolism by barbiturates. Biochem. Pharmacol. 23: 1877–1889, 1974.CrossRefGoogle Scholar
  12. 12.
    Whaley, W.M. and Govindachari, T.R.: The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds. In R. Adams et al. (eds.), Organic Reactions 6: 151–206. New York: Wiley. 1951.Google Scholar
  13. 13.
    Laidlaw, P.P.: The action of tetrahydropapaveroline hydrochloride. J. Physiol. (London) 40: 480–491, 1910.Google Scholar
  14. 14.
    Holtz, P., Stock, K. and Westermann, E.: Pharmakologie des Tetrahydropapaverolins und seine Entstehung aus Dopamin. Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 248: 387–405, 1964.Google Scholar
  15. 15.
    Santi, R., Bruni, A., Luciani, S., Toth, C.E., Ferrari, M., Fassina, G. and Contessa, A.R.: Pharmacological properties of tetrahydropapaveroline and their relation to the catecholamines. J. Pharm. Pharmacol. 16: 287–288, 1964.CrossRefGoogle Scholar
  16. 16.
    Santi, R., Ferrari, M., Toth, C.E., Contessa, A.R., Fassina, G., Bruni, A. and Luciani, S.: Pharmacological properties of tetrahydropapaveroline. J. Pharm. Pharmacol. 19: 45–51, 1967.CrossRefGoogle Scholar
  17. 17.
    Kukovetz, W.R. and Poch, G.: Beta-adrenerge Effekte und ihr zeitlicher Verlaug unter Tetrahydropapaverolin und Isoprenalin am Langendorff-Herzen. Naunyn-Schmeidebergs Arch. Pharmakol. Exp. Pathol. 256: 301–309, 1967.CrossRefGoogle Scholar
  18. 18.
    Battersby, A.R.: Alkaloid Biosynthesis. Quart. Rev. 15: 259–286, 1961.Google Scholar
  19. 19.
    Bentley, K.W.: The Isoquinoline Alkaloids. New York: Pergamon Press. 1965.Google Scholar
  20. 20.
    Spenser, E.D.: Biosynthesis of the alkaloids related to norlandanosoline. Lloydia 29: 71, 1966.Google Scholar
  21. 21.
    Kirby, G.W.: Biosynthesis of the morphine alkaloids. Science 155: 170–173, 1967.CrossRefGoogle Scholar
  22. 22.
    Robinson, T.: The Biochemistry of Alkaloids. pp. 54–71. New York: Springer Verlag. 1968.Google Scholar
  23. 23.
    Shamma, M.: The Isoquinoline Alkaloids: Chemistry and Pharmacology.In A.T. Blomquist and H. Wasserman (eds.) Organic Chemistry, 25. New York: Academic Press. 1972.Google Scholar
  24. 24.
    Sandler, M., Carter, S.B., Hunter, K.R. and Stern, G.M.: Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 241: 439–443, 1973.CrossRefGoogle Scholar
  25. 25.
    Collins, M.A. and Bigdeli, M.D.: Alcohol intoxication and in vivo biosynthesis of the alkaloid, salsolinol, from dopamine in rat brain. Trans. Amer. Soc. Neurochem. 5: 160, 1974.Google Scholar
  26. 26.
    Algeri, S., Baker, K.M., Frigerio, A. and Turner, A.J.: Identification and quantitation of tetrahydropapaveroline in rat brain. Proc. 21st Annual Conference Amer. Soc. Mass Spectrometry: 301–302, 1973.Google Scholar
  27. 27.
    Collins, A.C., Cashaw, J.L. and Davis, V.E.: Dopamine-derived tetrahydroisoquinoline alkaloids–inhibitors of neuroamine metabolism. Biochem. Pharmacol. 22: 2337–2348, 1973.CrossRefGoogle Scholar
  28. 28.
    Rubenstein, J.A. and Collins, M.A.: Tetrahydroisoquinolines derived from norepinephrine-aldehyde condensations–pyrogallol-sensitive 0-methylation in rat homogenates. Biochem. Pharmacol. 22: 2928–2931, 1973.CrossRefGoogle Scholar
  29. 29.
    Davis, V.E., Brown, H., Huff, J.A., and Cashaw, J.L.: Ethanol-induced alternations of norepinephrine metabolism in man. J. Lab. Clin. Med. 69: 787–799, 1967.Google Scholar
  30. 30.
    Cashaw, J.L., McMurtrey, K.D., Davis, V.E.: Proc. 165th National Meeting Amer. Chem. Soc. Anal. Chem. Div. Abstract No. 5, 1973.Google Scholar
  31. 31.
    Gupta, R.N. and Spenser, E.D.: Biosynthetic incorporation of one carbon units into berberine and hydrastine. Can. J. Chem. 43: 133, 1965.CrossRefGoogle Scholar
  32. 32.
    Macko, D., Douglas, B., Weisbach, J.A. and Waltz, D.T.: Studies on the pharmacology of nuciferine and related aporphines. Arch. in Pharmacodyn. 197: 261–273, 1972.Google Scholar
  33. 33.
    Alpers, H.S., McLaughlin, B.R., Nix, W.M. and Davis, V.E.: Tetrahydroisoquinoline and tetrahydroprotoberberine alkaloids: Inhibition of catecholamine accumulation by rat brain synaptosomal preparations. Fed. Proc. 33: 511, 1974.Google Scholar
  34. 34.
    Hsu, B. and Kin, K.C.: Pharmacological study of tetrahydropalmatine and its analogs–a new type of central depressants. Arch. int. Pharmacodyn., 139: 318–327, 1962.Google Scholar
  35. 35.
    Nakanishi, H.: Pharmacological studies of xylopinine, 2,3,10, 11-tetramethoxy-5,6–13,13a-tetrahydro-8-dibenzo(a-g)quinolizine, semisynthesized from phellodendrine isolated from Phellodendron amurense Rupp. Jap. J. Pharmacol. 12: 208–222, 1962.Google Scholar
  36. 36.
    Yamamoto, H.: The central effects of xylopinine in mice. Jap. J. Pharmacol. 13: 230–239, 1963.CrossRefGoogle Scholar
  37. 37.
    Roussel-UCLAF Patents, Substituted 3,9,10-trimethoxyberbine tranquilizers. Chem. Abstracts 69: 59475m, 1968; 1,2,3,10tetramethoxyberbine, a tranquilizing agent. Chem. Abstracts 71: 70788c, 1969; Tranquilizing d1–1,3,10-trimethoxyberbine. Chem. Abstracts. 73: 15063d, 1970.Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Virginia E. Davis
    • 1
  • Jesse L. Cashaw
    • 1
  • K. D. McMurtrey
    • 1
  1. 1.Neurochemistry and Addiction Research LaboratoryVeterans Administration HospitalHoustonUSA

Personalised recommendations