Alteration in Cerebral Polynucleotide Metabolism Following Chronic Ethanol Ingestion

  • Sujata Tewari
  • Ernest P. Noble
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 59)

Abstract

Ribonucleic acids (RNA) and proteins are known to have unique functions (1–4) in the central nervous system in addition to their general role in cellular metabolism. For example, alterations in RNA of neural tissue have been demonstrated following learning (5) or subsequent to hormonal treatment (6,7).

Keywords

Endoplasmic Reticulum Ethanol Ingestion Orotic Acid Ethanol Group Brain Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moore, B. W,, Specific acid proteins of the nervous system, In: Physiological and Biochemical Aspects of Nervous Integration, F. D. Carlson (ed.), Prentice Hall, Englewood Cliffs, NJ, 1968, pp. 343–350.Google Scholar
  2. 2.
    Barondes, S. H. and Jarvik, M. E., The influence of actinomycin-D on brain RNA synthesis and on memory. J. Neurochem. 11: 187–195, 1964.CrossRefGoogle Scholar
  3. 3.
    Bondy, S. C., The ribonucleic acid metabolism of the brain. J. Neurochem. 13: 955–959, 1966.CrossRefGoogle Scholar
  4. 4.
    Glassman, E. and Wilson, J. E., The incorporation of uridine into brain RNA during short experiences. Brain Res. 21: 157–168, 1970.CrossRefGoogle Scholar
  5. 5.
    Glassman, E., The biochemistry of learning: An evaluation of the role of RNA and protein. Ann. Rev. Biochem. 38: 605646, 1969.Google Scholar
  6. 6.
    Geel, S. E. and Timiras, P. S., Influence of growth hormone on cerebral cortical RNA metabolism in immature hypo-thyroid rats. Brain Res. 22: 63–72, 1970.CrossRefGoogle Scholar
  7. 7.
    Faiszt, J. and Adams, G., Role of different RNA fractions from the brain in transfer effect. Nature 220: 367–368, 1968.CrossRefGoogle Scholar
  8. 8.
    Noble, E. P. and Tewari, S., The effects of chronic ethanol ingestion on the protein synthesizing system of C57BL/6J mice. In: Biological Aspects of Alcohol Consumption 0. Forsander and K. Eriksson (eds.), The Finnish Foundation for Alcohol Studies, Helsinki, 1972, pp. 275287.Google Scholar
  9. 9.
    Tewari, S. and Noble, E. P., Ethanol and brain protein synthesis. Brain Res. 26: 469–474, 1971.Google Scholar
  10. 10.
    Fleming, E. W., Tewari, S. and Noble, E. P., Effects of chronic ethanol ingestion on brain aminoacyl-tRNA synthesis and tRNA. J. Neurochem., 1975, in press.Google Scholar
  11. 11.
    Noble, E. P. and Tewari, S., Protein and ribonucleic acid metabolism in brains of mice following chronic alcohol consumption. N. Y. Acad. Sci. 215: 333–345, 1973.CrossRefGoogle Scholar
  12. 12.
    Lee, S. Y., Mendecki, J. and Brawerman, G. A., A poly-nucleotide segment rich in adenylic acid in rapidly-labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc. Nat, Acad. Sci., U.S., 68: 1331–1335, 1971.CrossRefGoogle Scholar
  13. 13.
    Lim, L. and Canellakis, E. S., Adenine-rich polymer associated with rabbit reticulocyte messenger RNA. Nature 227: 710–712, 1970.CrossRefGoogle Scholar
  14. Darnell, J. E,, Philipson, L,, Wall, R. and Adesnik, M., Polyadenylic acid sequences: Role in conversion of nuclear RNA into messenger RNA. Science 174: 507–510, 1971.CrossRefGoogle Scholar
  15. 15.
    Noble, E. P., Wurtman, R. J. and Axelrod, J. A., A simple and rapid method for injecting H3-norepinephrine into the lateral ventricle of the rat brain. Life Sci. 6: 281–291, 1967.CrossRefGoogle Scholar
  16. 16.
    Tewari, S. and Baxter, C. F,, Stimulatory effects of ó-aminobutyric acid upon amino acid incorporation into protein by a ribosomal system from immature rat brain. J. Neurochem, 16: 171–180, 1969.CrossRefGoogle Scholar
  17. 17.
    Dravid, A. R., Pete, N. and Mandel, P., An enzyme system in rat brain nuclei incorporating AMP into polyadenylate, J. Neurochem. 18:299–306, 1971Google Scholar
  18. 18.
    Blobel, G. and Potter, V. R,, Ribosomes in rat liver: An estimate of the percentage of free and membrane-bound ribosomes interacting with messenger RNA in vivo. J. Mol. Biol, 28: 539–542, 1967.CrossRefGoogle Scholar
  19. 19.
    Bloemendal, H., Littauer, U.Z,, and Daniel, V., Transfer of soluble polynucleotides to microsomal RNA. Biochim. Biophys. Acta 51: 66–72, 1961.CrossRefGoogle Scholar
  20. 20.
    Lowry, 0, H., Rosebrough, N. J,, Farr, A. L. and Randall, R,J., Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275, 1951.Google Scholar
  21. 21.
    Majbaum, W,, Estimation of RNA by the orcinol method of Mejbaum (1939). In: Techniques of Protein Biosynthesis. P. N. Campbell and J. R. Sargent (eds.), Vol. 1, Academic Press, NY, 1967, pp. 301–303Google Scholar
  22. 22.
    Palade, G. E. and Siekevitz, P,, Liver microsomes, An integrated morphological and biochemical study. J. Biophys, Biochemo Cytol 2:171–201, 1956Google Scholar
  23. 23.
    Takagi, M. and Ogata, K,, Direct evidence for albumin biosynthesis by membrane bound polysomes in rat liver. Biochemo Biophys, Res, Comms. 33:55–60, 1968Google Scholar
  24. 24.
    Hicks, S. J., Drysdale, J. W. and Munro, H. N., Preferential synthesis of ferritin and albumin by different populations of liver polysomes. Science 164: 584–585, 1969.CrossRefGoogle Scholar
  25. 25.
    Patay, S. L. and Palade, G. E., Fine structure of neurons. J. Biophys, Biochem. Cytol, 1: 69–88, 1955.CrossRefGoogle Scholar
  26. 26.
    Merits, I., Cain, J. C., Rdzok, E. J. and Minard, F. N., Distribution between free and membrane-bound ribosomes in rat brain. Experientia 25:739, 1969Google Scholar
  27. 27.
    Kato, T. and Kurokawa, M., Studies on ribonucleic acid and homopolyribonucleotide formation in neuronal, glial and liver nuclei. Biochem. J. 116: 599–609, 1970.Google Scholar
  28. 28.
    Gabrielli, F. and Baglioni, C., Translation of histone messenger RNA by homologous cell-free systems from synchronized HeLa cells. Europ, J. Biochem. 42: 121–128, 1974.CrossRefGoogle Scholar
  29. 29.
    Tewari, S., Fleming, E. W. and Noble, E. P., Alterations in brain RNA metabolism following chronic ethanol ingestion, J. Neurochem 1975, in press.Google Scholar
  30. 30.
    Tewari, S. and Noble, E. P., Chronic ethanol ingestion by rodents: Effects on brain RNA. In: Alcohol and Abnormal Protein Biosynthesis. M. A. Rothschild, M. Oratz, and S. S. Schreiber (eds.), Pergamon Press Inc,, NY, 1975.Google Scholar
  31. 31.
    Penman, S., Scherrer, K., Becker, Y. and Darnell, J., Poly-ribosomes in normal and poliovirus-injected HeLa cells and their relationship to messenger-RNA. Proc. Nat. Acad. Sci, 49: 654–662, 1963.CrossRefGoogle Scholar
  32. 32.
    Girard, M., Latham, H., Penman, S., and Darnell, J., Entrance of newly formed messenger RNA and ribosomes into HeLa cell cytoplasm, J. Mol. Biol, 11: 187–201, 1965.CrossRefGoogle Scholar
  33. 33.
    Campagnoni, A. T., Dutton, G. R., Mahler, H. R. and Moore, W. J., Fractionation of the RNA components of rat brain polysomes. J. Neurochem, 18: 601–611, 1971.CrossRefGoogle Scholar
  34. 34.
    Khan, A. and Wilson, J. E., Studies of turnover in mammalian subcellular particles: Brain nuclei, mitochondria and microsomes, J. Neurochem, 12: 81–86, 1965.CrossRefGoogle Scholar
  35. 35.
    Sabatini, D. D., Tashiro, Y. and Palade, G. E., On the attachment of ribosomes to microsomal membranes. J. Mol. Biol. 19: 503–524, 1966.Google Scholar
  36. 36.
    Murthy, M. R. V., Free and membrane-bound ribosomes of rat cerebral cortex, J. Biol. Chem. 247: 1944–1950, 1972.Google Scholar
  37. 37.
    Dutton, G. R. and Mahler, H. R., In vitro RNA synthesis by intact rat brain nuclei. J. Neurochem. 15:765–780, 1968.Google Scholar
  38. 38.
    Burr, H. and Lingrel, J. B., Poly A sequences at the 3’ termini of rabbit globin mRNA’se Nature (New Biol.) 233: 41–43, 1971.CrossRefGoogle Scholar
  39. 39.
    Adesnik, M., Salditt, M., Thomas, W, and Darnell, J. E., Evidence that all messenger RNA molecules (except histone messenger RNA) contain poly (A) sequences and that the poly (A) has a nuclear function. J. Mol. Biol 71:21–30, 1972Google Scholar
  40. 40.
    Mendecki, J., Lee, S. Y. and Brawerman, G., Characteristics of the polyadenylic acid segment associated with messenger ribonucleic acid in mouse sarcoma 180 ascites cells. Biochemistry 11:792–798, 1972Google Scholar
  41. 41.
    Kolata, G. B., Control of protein synthesis (I): Poly (A) in cytoplasm. Science 185:517–518, 1974Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Sujata Tewari
    • 1
  • Ernest P. Noble
    • 1
  1. 1.Section of Neurochemistry Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineUSA

Personalised recommendations