Hepatic and Metabolic Effects of Ethanol on Rhesus Monkeys

  • Boris H. Ruebner
  • Robert I. Krieger
  • Jeffrey L. Miller
  • Makepeace Tsao
  • Marie Rorvik
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 59)

Abstract

Human alcoholics may suffer from a great variety of hepatic morphologic and biochemical abnormalities such as fatty liver, alcoholic hepatitis and cirrhosis. In addition, the metabolism of alcohol and of drugs is accelerated in human alcoholics (Shah,et al, 1972). The mechanisms of these changes are still disputed. Hepatic fatty change has been attributed to nutritional imbalance (Porta et al, 1970) and to a direct toxic effect of ethanol (Lieber et al, 1971). The mechanism of the accelerated metabolism of alcohol also remains uncertain.

Keywords

Fatty Liver Rhesus Monkey Prussian Blue Chronic Ethanol Alcoholic Hepatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belfrage, P., Berg, B., Chronholm, T., Elmquist, D., Hagerstrand, I., Johansson, B., Nilsson-Ehle, P., Norden, G., Sjovall, J., Wiebe, T.: Prolonged Administration of Ethanol to Healthy Volunteers: Effects on Biochemical, Morphological and Neuro-physiological Parameters. Acta. Med. Scand. Suppl 552.Google Scholar
  2. 2.
    Carter, E.A., Isselbacher, K.J.: Hepatic Microsomal Ethanol Oxidation, Mechanism and Physiologic Significance. Laboratory Investigation. 27: 283–286, 1972.Google Scholar
  3. 3.
    De Carli, L.M., Lieber, C.S.: Fatty Liver in the Rat After Prolonged Intake of Ethanol with a Nutritionally Adequate New Liquid Diet. J. Nutr., 91: 331–336, 1967.Google Scholar
  4. 4.
    Eggstein, M.: Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe II. Klin. Wschr, 44: 267, 1966.CrossRefGoogle Scholar
  5. 5.
    Gornall, A.G., Bardawill, C.J., David, M.M.: Determination of Serum Proteins by Means of the Biuret Reaction. J. Biol. Chem., 177: 751, 1949.Google Scholar
  6. 6.
    Ideo, G., de Franchis, R., Del Ninno, E., Corucci, C., Dioguardi, N.: Increase of Some Rat Liver Microsomal Enzymes as a Consequence of Prolonged Alcohol Intake: Comparison with the Effect of Phenobarbitone. Enzyme 12 (4): 473–480, 1971.Google Scholar
  7. 7.
    Irsigler, K. and Hrabal, I.: Zur Neutralfettbestimmung im Biopsie-material der Menschlichen Leber. Klin. Wschr, 46: 432, 1968.CrossRefGoogle Scholar
  8. 8.
    Joly,J-G, Ishii, H.,Teschke, R., Hasumura, Y., Lieber, C.S.: Effect of Chronic Ethanol Feeding on the Activities and Submicrosomal Distribution of Reduced Nicotinamide Adenine Dinucleotide Phosphate-Cytochrome P-450 Reductase and the Demethylases for Aminopyrine and Ethylmorphine. Biochemical Pharmacology, Vol 2: 1532–1535, 1973.Google Scholar
  9. 9.
    Lieber, C.S., De Carli, L.M.: The Role of the Hepatic Microsomal Ethanol Oxidizing System (Meos) for Ethanol Metabolism in Vivo. J. Pharmacol. and Exptl. Therap. 181: 279–287, 1972.Google Scholar
  10. 10.
    Lieber, C.S., “Ethanol and the Liver” in Alcoholism, Progress in Research and Treatment. Edited by Bourne, P.G. and Fox, R. Academic Press Inc., New York and London, 1973Google Scholar
  11. 11.
    Lieber, C.S., Rubin, E., De Carli, L.M., Gang, H., Walker, G.: Hepatic Effects of Long Term Ethanol Consumption with High or Low Protein Diets in Primates. Gastroenterology, 60:, 1971.Google Scholar
  12. 12.
    Lindenbaum, J., Shea, N., Saha, J.R., Lieber, C.S.: Alcohol Induced Impairment of Carbohydrate Absorption. Clin. Res., 20: 459, 1972.Google Scholar
  13. 13.
    Makar, A.B., Mannering, G.J.: Kinetics of Ethanol Metabolism in the Intact Rat and Monkey. Biochemical Pharmacology. Vol. 19, 2017–2022, 1970.CrossRefGoogle Scholar
  14. 14.
    Mezey, E., Robles, E.A.: Effects of Phenobarbital Administration on Rats of Ethanol Clearance and on Ethanol-Oxidizing Enzymes in Man. Gastroenterology. Vol. 66, 248–253, 1974.Google Scholar
  15. 15.
    Millonig, G.: Further Observations on a Phosphate Buffer for Osmium Solutions in Fixation in Electron Microscopy. Fifth International Congress for Electron Microscopy: ed. Breese, S.S.: Academic Press, New York 2:, 1962.Google Scholar
  16. 16.
    Misra, P.S., Lefevre, A., Ishii, H., Rubin, E., Lieber, C.S.: Increase of Ethanol, Meprobamate and Pentobarbital Metabolism After Chronic Ethanol Administration in Man and in Rats. J. Med. 51: 346–351, 1971.CrossRefGoogle Scholar
  17. 17.
    Oshino, N., Oshino, R., Chance, B.: The Characteristics of the ‘Peroxidatic’ Reaction of Catalase in Ethanol Oxidation. Biochemical Journal. Vol 131: 555–567, 1973.Google Scholar
  18. 18.
    Pieper, W.A., Skeen, M.J.: Changes in Rate of Ethanol Elimination associated with Chronic Administration of Ethanol to Chimpanzees and Rhesus Monkeys. Drug Metab. Disposition 1 (4): 634–641, 1973.Google Scholar
  19. 19.
    Pirola, R.C., Lieber, C.S.: Energy Cost of Ethanol Metabolism. Clin. Res., 21: 719, 1973.Google Scholar
  20. 20.
    Porta, E.A., Koch, O.R., Hartroft, W.S.: Recent Advances in Molecular Pathology: A Review of the Effects of Alcohol on the Liver. Exper. and Mole. Path., 12: 104–132, 1970.Google Scholar
  21. 21.
    Portman, 0.W.: Nutritional Requirements of Non-Human Primates in “Feeding and Nutrition of Non-Human Primates”. Edited by Harris, R.S.; Academic Press, 1970.Google Scholar
  22. 22.
    Rodrigo, C., Antezana, C., Baraona, E.: Fat and Nitrogen Balances in Rats with Alcohol-Induced Fatty Liver. (E.) J. Nutr., 101: 1307–1310, 1971.Google Scholar
  23. 23.
    Rubin, E., Lieber, C.S.: Fatty Liver, Alcoholic Hepatitis, and Cirrhosis Produced by Alcohol in Primates. New Eng. J. Med., 290: 128–135, 1974.CrossRefGoogle Scholar
  24. 24.
    Ruebner, B.H., Brayton, M.A., Freedland, R.A., Kanayama, R., Tsao, M.: Production of a Fatty Liver by Ethanol in Rhesus Monkeys. Lab. Invest., 27: 71–75, 1972.Google Scholar
  25. 25.
    Shah, M.N., Clancy, B.A., Iber, F.L.: Comparison of Blood Clearance of Ethanol and Tolbutamide and the Activity of Hepatic Ethanol-Oxidizing and Drug-Metabolizing Enzymes in Chronic Alcoholic Subjects. Amer. J. of Clinical Nutrition. Vol. 25 135–139, 1972.Google Scholar
  26. 26.
    Singlevich, T.E., Barboriak, J.J.: Ethanol and Induction of Microsomal Drug-Metabolizing Enzymes in the Rat. Toxicol. Appl. Pharmacol. 20 (3): 284–290, 1971.CrossRefGoogle Scholar
  27. 27.
    Thurman, R.G., Induction of Hepatic Microsomal Reduced Nicotinamide Adenine Dinucleotide Phosphate-Dependent Production of Hydrogen Peroxide by Chronic Prior Treatment with Ethanol. Mol. Pharmacol. 9 (5): 670–675, 1973.Google Scholar
  28. 28.
    Vatsis, R.P.,Schulman, M.P.: Absence of Ethanol Metabolism in Acatalatic Hepatic Microsomes That Oxidize Drugs. Biochemical Biophysical Research Communications, 52: 588–594, 1973.CrossRefGoogle Scholar
  29. 29.
    Venables, J.H., Coggeshall, R.: A simplified Lead Citrate Stain for Use in Electron Microscopy. J. Cell Biol., 25: 407, 1965.CrossRefGoogle Scholar
  30. 30.
    Watkins, W.D.: Studies on the Toxicologic Role of Mammalian Alcohol Dedydrogenase. Dissertation Abstracts International. 32:1744-B, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Boris H. Ruebner
    • 1
  • Robert I. Krieger
    • 1
  • Jeffrey L. Miller
    • 1
  • Makepeace Tsao
    • 1
  • Marie Rorvik
    • 1
  1. 1.Departments of Pathology and Surgery, School of Medicine and Department of Environmental ToxicologyCollege of Agriculture, University of CaliforniaDavisUSA

Personalised recommendations