Intrinsic Control Mechanisms of Pain Perception

  • James W. Lewis
  • Linda R. Nelson
  • Gregory W. Terman
  • Yehuda Shavit
  • John C. Liebeskind

Abstract

Through the course of evolution, the brain has become increasingly able to respond adaptively to the ever-changing internal and external sensory world. To do so, it must continually monitor the environment through specialized sensory systems. One might imagine that the brain passively receives environmental inputs, processes them, and responds accordingly. We are learning instead that some sensory information can be modulated before it reaches the brain by the activation of centrifugal paths descending from higher central nervous system stations to lower ones in the brain, in the spinal cord, and even in the periphery. Thus, it appears to be important, at least at certain times, that some inputs never reach the brain or arrive only after considerable modification.

Keywords

Opioid Peptide Prenatal Alcohol Exposure Pain Inhibition Analgesic Response Neuroscience Abstract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader, R. (1975). Early experience and hormones: Emotional behavior and adrenocortical function. In B. E. ELEFTHERIOU and R. SPROTT (Eds.), Hormonal correlates of behavior. New York: Plenum Press, pp. 7–33.Google Scholar
  2. Ader, R. (1981). Psychoneuroimmunology. New York: Academic Press.Google Scholar
  3. Akil, H., Mayer, D. J., and Liebeskind, J. C. (1972). Comparaison chez le rat entre l’analgésie induite par stimulation de la substance grise péri-aqueducale et l’analgésie morphinique. Comptes Rendus de l’Académie des Sciences (Paris), 274, 3603–3605.Google Scholar
  4. Akil, H., Madden, J., Patrick, R. L., and Barchas, J. D. (1976a). Stress-induced increase in ‘endogenous opiate peptides; concurrent analgesia and its partial reversal by naloxone. In H. W. KOSTERLITZ (Ed.), Opiates and endogenous opioid peptides. Amsterdam: Elsevier, pp. 63–70.Google Scholar
  5. Akil, H., Mayer, D. J., and Liebeskind, J. C. (1976b). Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science, 191 961–962.PubMedCrossRefGoogle Scholar
  6. Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachturian, H., and Walker, J. M. (1984). Endogenous opioids: Biology and function. Annual Review of Neuroscience, 7, 223–255.PubMedCrossRefGoogle Scholar
  7. Amir, S., and Amit, Z. (1978). Endogenous opioid ligands may mediate stress-induced changes in the affective properties of pain related behavior in rats. Life Sciences, 23, 1143–1152.PubMedCrossRefGoogle Scholar
  8. Amir, S., Amit, Z. (1979). The pituitary gland mediates acute and chronic pain responsiveness in stressed and non-stressed rats. Life Sciences, 24, 439–448.PubMedCrossRefGoogle Scholar
  9. Azami, J., Llewelyn, M. B., and Roberts, H. H. T. (1982). The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Pain, 12, 229–246.PubMedCrossRefGoogle Scholar
  10. Bardo, M. T., Bhatnagar, R. K., and Gebhart, G. F. (1981). Opiate receptor ontogeny and morphine-induced effects: Influence of chronic footshock stress in preweanling rats. Developmental Brain Research, 1, 487–495.CrossRefGoogle Scholar
  11. Basbaum, A. I., Marley, N. J., O’keefe, J., and Clanton, C. H. (1977). Reversal of morphine and stimulus produced analgesia by subtotal spinal cord lesions. Pain, 3, 43–56.Google Scholar
  12. Bodnar, R. J., Glusman, M., Brutus, M., Spiaggia, A., and Kelly, D. D. (1979). Analgesia induced by cold-water stress: Attenuation following hypophysectomy. Physiology and Behavior, 23, 53–62.PubMedCrossRefGoogle Scholar
  13. Bodnar, R. J., Kelly, D. D., Spiaggia, A., Ehrenberg, C., and Glusman, M. (1978a). Dosedependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacology, Biochemistry, and Behavior, 8, 667–672.Google Scholar
  14. Bodnar, R. J., Kelly, D. D., Spiaggia, A., and Glusman, M. (1978b). Biphasic alterations of nociceptive thresholds induced by food deprivation. Physiological Psychology, 6, 39 1395.Google Scholar
  15. Bodnar, R. J., Kelly, D. D., Steiner, S. S., and Glusman, M. (1978c). Stress-produced analgesia and morphine-produced analgesia: Lack of cross-tolerance. Pharmacology, Biochemistry, and Behavior, 8, 661–666.Google Scholar
  16. Cannon, J. T., Lewis, J. W., Weinberg, V. E., and Liebeskind, J. C. (1983). Evidence for the independence of brain stem mechanisms mediating analgesia induced by morphine and two forms of stress. Brain Research, 269, 231–236.PubMedCrossRefGoogle Scholar
  17. Cannon, J. T., Prieto, G. J., Lee, A., and Liebeskind, J. C. (1982). Evidence for opioid and nonopioid forms of stimulation-produced analgesia in the rat. Brain Research, 243, 315321.Google Scholar
  18. Chance, W. T. (1980). Autoanalgesia: Opiate and non-opiate mechanisms. Neuroscience and Biobehavior Review, 4, 55–67.CrossRefGoogle Scholar
  19. Chance, W. T., and Rosecrans, J. A. (1979a). Lack of cross-tolerance between morphine and autoanalgesia. Pharmacology, Biochemistry, and Behavior, 11, 639–642.Google Scholar
  20. Chance, W. T., and Rosecrans, J. A. (1979b). Lack of effect of naloxone on autoanalgesia. Pharmacology, Biochemistry, and Behavior, 11, 643–646.Google Scholar
  21. Chance, W. T., White, A. C., Krynock, G. M., and Rosecrans, J. A. (1977). Autoanalgesia: Behaviorally activated antinociception. European Journal of Pharmacology, 44, 283–284.PubMedCrossRefGoogle Scholar
  22. Chance, W. T., White, A. C., Krynock, G. M., and Rosecrans, J. A. (1978). Conditional fear-induced decreases in the binding of (3H)-N-Leu-enkephalin to rat brain. Brain Research, 14I, 371–374.CrossRefGoogle Scholar
  23. Chesher, G. B., and Chan, B. (1977). Footshock induced analgesia in mice: Its reversal by naloxone and cross-tolerance with morphine. Life Sciences, 21, 1569–1574.PubMedCrossRefGoogle Scholar
  24. Crowley, W. R., Rodriguez-Sierra, J. F., and Komisaruk, B. R. (1977). Analgesia induced by vaginal stimulation in rats is apparently independent of a morphine-sensitive process. Psychopharmacology, 54, 223–225.PubMedCrossRefGoogle Scholar
  25. D’amour, F. E., and Smith, D. L. (1941). A method for determining loss of pain sensation. Journal of Pharmacology and Experimental Therapeutics, 72, 74–79.Google Scholar
  26. Dennis, S. G., Choiniere, M., and Melzack, R. (1980). Stimulation-produced analgesia in rats: Assessment by two pain tests and correlation with self-stimulation. Experimental Neurology, 68, 295–309.PubMedCrossRefGoogle Scholar
  27. Dennis, S. G., and Melzack, R. (1980). Pain modulation by 5-hydroxytryptaminergic agents and morphine as measured by three pain tests. Experimental Neurology, 69, 260–270.PubMedCrossRefGoogle Scholar
  28. Fields, H. L. (1984). Brainstem mechanisms of pain modulation. In L. KRUGER and J. C. LIEBESKIND (Eds.), Neural mechanisms of pain. Advances in Pain Research and Therapy, Vol. 6. New York: Raven Press, pp. 252.Google Scholar
  29. Fields, H. L., and Basbaum, A. I. (1979). Anatomy and physiology of a descending pain control system. In J. J. BONICA, J. C. LIEBESKIND, and D. G. ALBE-FESSARD (Eds.), Advances in pain research and therapy, Vol. 3. New York: Raven Press, pp. 427–440.Google Scholar
  30. Geisler, G. J., and Liebeskind, J. C. (1976). Inhibition of visceral pain by electrical stimulation of the periaqueductal gray matter. Pain, 2, 43–48.CrossRefGoogle Scholar
  31. Glick, S., and Crane, L. A. (1978). Opiate-like and abstinence-like effects of intracerebral histamine administration in rats. Nature, 273, 547–549.PubMedCrossRefGoogle Scholar
  32. Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F. (1977). 13-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science, 197, 1367–1369.Google Scholar
  33. Hayes, R. L., Bennett, G. J., Newlon, P. G., and Mayer, D. J. (1976). Analgesic effects of certain noxious and stressful manipulations in the rat. Society for Neuroscience Abstracts, 2, 939.Google Scholar
  34. Hayes, R. L., Bennett, G. J., Newlon, P. G., and Mayer, D. J. (1978). Behavioral and physiological studies of non-narcotic analgesia in the rat elicited by certain environmental stimuli. Brain Research, 155, 69–90.PubMedCrossRefGoogle Scholar
  35. Hayes, R. L., Price, D. D., Benneii, G. J., Wilcox, G. L., and Mayer, D. J. (1978b). Differential effects of spinal cord lesions on narcotic and non-narcotic suppression of nociceptive reflexes: Further evidence for the physiological multiplicity of pain modulation. Brain Research, 155, 91–102.PubMedCrossRefGoogle Scholar
  36. Hokeelt, T., Ljungdahl, A., Terenius, L., Elde, R., and Nilson, G. (1977). Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P. Proceedings of the National Academy of Sciences, 74, 3081–3085.CrossRefGoogle Scholar
  37. Hosobuchi, Y., Adams, J. E., and Lincxrrz, R. (1977). Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science, 197, 183–186.PubMedCrossRefGoogle Scholar
  38. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R. (1976). Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 258, 577–579.CrossRefGoogle Scholar
  39. Jackson, R. L., Maier, S. F., and Coon, D. J. (1979). Long-term analgesic effects of inescapable shock and learned helplessness. Science, 206, 91–93.PubMedCrossRefGoogle Scholar
  40. Jensen, T. S. and Smith, D. F. (1981). The role of consciousness in stress-induced analgesia. Journal of Neural Transmission, 52, 55–60.PubMedCrossRefGoogle Scholar
  41. Klein, M. V., Lovaas, K. M., Terman, G. W., and Liebeskind, J. C. (1983). The effects of decerebration and spinal transection on three discrete forms of stress-induced analgesia. Society for Neuroscience Abstracts, 9, 795.Google Scholar
  42. Klein, M. V., Terman, G. W., and Liebeskind, J. C. (1984). Effects of pentobarbital on three forms of stress-induced analgesia. Society for Neuroscience Abstracts, 10, 1105.Google Scholar
  43. Laudenslager, M. L., Ryan, S. M., Drugan, R. C., Hyson, R. L., and Maier, S. F. (1982). Coping and immunosuppression: Inescapable but not escapable shock suppresses lymphocyte proliferation. Science, 221, 568–570.CrossRefGoogle Scholar
  44. Levy, S. M. Biological mediators of behavior and disease: Neoplasia. New York: Elsevier Biomedical.Google Scholar
  45. Lewis, J. W., Cannon, J. T., and Liebeskind, J. C. (1980a). Opioid and nonopoid mechanisms of stress analgesia. Science, 208, 623–625.PubMedCrossRefGoogle Scholar
  46. Lewis, J. W., Cannon, J. T., and Liebeskind, J. C. (1983a). Involvement of central muscarinic cholinergic mechanisms in opioid stress analgesia. Brain Research, 270, 289–293.PubMedCrossRefGoogle Scholar
  47. Lewis, J. W., Cannon, J. T., Stapleton, J. M., and Liebeskind, J. C. (1980b). Stress activates endogenous pain-inhibitory systems: Opioid and nonopioid mechanisms. Proceedings of the Western Pharmacology Society, 23, 85–88.PubMedGoogle Scholar
  48. Lewis, J. W., Cannon, J. T., Liebeskind, J. C., and Akil, H. (1981a). Alterations in brain ß-endorphin immunoreactivity following acute and chronic stress. Pain, Supplement 1, S263.Google Scholar
  49. Lewis, J. W., Chudler, E. H., Cannon, J. T., and Liebeskind, J. C. (1981b). Hypophysectomy differentially affects morphine and stress analgesia. Proceedings of the Western Pharmacology Society, 24, 323–326.PubMedGoogle Scholar
  50. Lewis, J. W., Shavit, Y., Terman, G. W., Gale, R. P., and Liebeskind, J. C. (1983–84). Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B.) Natural Immunity and Cell Growth Regulation, 3, 43–50.Google Scholar
  51. Lewis, J. W., Shavit, Y., Terman, G. W., Nelson, L. R., Gale, R. P., and Liebeskind, J. C. (1983b). Apparent involvement of opioid peptides in stress-induced enhancement of tumor growth. Peptides, 4, 635–638.PubMedCrossRefGoogle Scholar
  52. Lewis, J. W., Sherman, J. E., and Liebeskind, J. C. (1981c). Opioid and nonopioid stress analgesia: Assessment of tolerance and cross-tolerance with morphine. Journal of Neuroscience, 1, 358–363.PubMedGoogle Scholar
  53. Lewis, J. W., Stapleton, J. M., Castiglioni, A. J., and Liebeskind, J. C. (1982a). Stimulation-produced analgesia and intrinsic mechanisms of pain suppression. In G. FINK and L. J. WHALLEY (Eds.), Neuropeptides-Basic and clinical aspects. Edinburgh: Churchill Livingstone, pp. 41–49.Google Scholar
  54. Lewis, J. W., Terman, G. W., Watkins, L. R., Mayer, D. J., and Liebeskind, J. C. (1983c). Opioid and nonopioid mechanisms of footshock-induced analgesia: Role of the spinal dorsolateral funiculus. Brain Research, 269, 231–236.PubMedCrossRefGoogle Scholar
  55. Lewis, J. W., Tordoff, M. G., Liebeskind, J. C., and Viveros, O. H. (1982b). Evidence for adrenal medullary opioid involvement in stress analgesia. Society for Neuroscience Abstracts, 8, 778.Google Scholar
  56. Lewis, J. W., Tordoff, M. G., Sherman, J. E., and Liebeskind, J. C. (1982c). Adrenal medullary enkephalin-like peptides may mediate opioid stress analgesia. Science, 217, 557–559.PubMedCrossRefGoogle Scholar
  57. Liebeskind, J. C., Giesler, G. J., JR., and Urca, G. (1976). Evidence pertaining to an endogenous mechanism of pain inhibition in the central nervous system. In Y. ZoTTERMAN (Ed.), Sensory functions of the skin in primates. Oxford: Pergamon Press, pp. 561–573.Google Scholar
  58. Livingston, R. B. (1959). Central control of receptors and sensory transmission systems. In J. FIELD (Ed.), Handbook of physiology, Section 1: Neurophysiology, Vol. 1. Washington, DC: American Physiological Society, pp. 741–760.Google Scholar
  59. Maclennan, A. J., Drugan, R. C., Hyson, R. L., Maier, S. F., Madden, J., and Barchas, J. D. (1982). Corticosterone: A critical factor in an opioid form of stress-induced analgesia. Science, 215, 1530–1532.PubMedCrossRefGoogle Scholar
  60. Madden, J., Akil, H., Patrick, R. L., and Barchas, J. D. (1977). Stress-induced parallel changes in central opioid levels and pain responsiveness in the rat. Nature, 265, 358360.Google Scholar
  61. Maier, S. F., Davies, S., Grau, J. W., Jackson, R. L., Morrison, D. H., Moye, T., Madden, J., and BARCHAS, J. D. (1980). Opiate antagonists and the long-term analgesic reaction induced by inescapable shock in rats. Journal of Comparative and Physiological Psychology, 94, 1172–1183.PubMedCrossRefGoogle Scholar
  62. Maier, S. F., Sherman, J. E., Lewis, J. W., Terman, G. W., and Liebeskind, J. C. (1983). The opioid/nonopioid nature of stress-induced analgesia and learned helplessness. Journal of Experimental Psychology: Animal Behavior Processes, 9, 80–90.PubMedCrossRefGoogle Scholar
  63. Maixner, W., and Randich, A. (1984). Role of the right vagal nerve trunk in antinociception. Brain Research, 298, 374–377.PubMedCrossRefGoogle Scholar
  64. Mayer, D. J., and Hayes, R. L. (1975). Stimulation-produced analgesia: Development of tolerance and cross-tolerance to morphine. Science, 188, 941–943.PubMedCrossRefGoogle Scholar
  65. Mayer, D. J., Wolfle, T. L., Akil, H., Carder, B., and Liebeskind, J. C. (1971). Analgesia from electrical stimulation in the brainstem of the rat. Science, 174, 1351–1354.PubMedCrossRefGoogle Scholar
  66. Mcgivern, R. F., Berka, C., Berntson, G. G., Walker, J. M., and Sandman, C. A. (1979). Effect of naloxone on analgesia induced by food deprivation. Life Sciences, 25, 885888.Google Scholar
  67. Miczek, K. A., Thompson, M. L., and Shuster, L. (1982). Opioid-like analgesia in defeated mice. Science, 215, 1520–1522.PubMedCrossRefGoogle Scholar
  68. Millan, M. J., Przewlocki, R., and Herz, A. (1980). A non-ß-endorphinergic adenohypophyseal mechanism is essential for an analgetic response to stress. Pain, 8, 343–353.PubMedGoogle Scholar
  69. Millan, M. J. Tsang, Y. F., Przewlocki, R., Hour, V., and Herz, A. (1981). The influence of foot-shock stress upon brain, pituitary, and spinal cord pools of immunoreactive dynorphin in rats. Neuroscience Letters, 24, 75–79.Google Scholar
  70. Nelson, L. R., Lewis, J. W., Liebeskind, J. C., Branch, B. J., and Taylor, A. N. (1982). Fetal exposure to ethanol potentiates opioid stress analgesia in adult rats. Society for Neuroscience Abstracts, 8, 596.Google Scholar
  71. Nelson, L. R., Lewis, J. W., Liebeskind, J. C., Branch, B. J., and Taylor, A. N. (1983a). Stress-induced changes in ethanol consumption in adult rats exposed to ethanol in utero. Proceedings of the Western Pharmacology Society, 26, 205–209.Google Scholar
  72. Nelson, L. R., Lewis, J.W., Liebeskind, J. C., Kokka, N., Randolph, D., Branch, B. J., and Taylor, A. N. (1983b). Enhanced responsiveness to morphine in adult rats following fetal ethanol exposure. Society for Neuroscience Abstracts, 9, 1242.Google Scholar
  73. Nelson, L. R., Taylor, A. N., Branch, B. J., Liebeskind, J. C., and Lewis, J. W. (1984). Fetal exposure to ethanol affects sensitivity to morphine but not brain opiate receptor binding in rats. Society for Neuroscience Abstracts, 10, 964.Google Scholar
  74. Oleson, T. D., Twombly, D. A., and Liebeskind, J. C. (1978). Effects of pain-attenuating brain stimulation and morphine on electrical activity in the raphe nuclei of the awake rat. Pain, 4, 211–230.PubMedCrossRefGoogle Scholar
  75. Oliveras, J. L., Besson, J. M., and Liebeskind, J. C. (1974). Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Experimental Brain Research, 20, 32–44.CrossRefGoogle Scholar
  76. Pedigo, N. W., and Dewey, W. L. (1981). Acetylcholine induced antinociception; comparisons to opiate analgesia. In G. PEPEU and H. LADINSKY (Eds.), Cholinergic mechanisms: Phylogenetic aspects, central and peripheral synapses, and clinical significance. Advances in Behavioral Biology, Vol. 25. New York: Plenum Press, pp. 795–807.Google Scholar
  77. Penner, E. R., Terman, G. W., and Liebeskind, J. C. (1982). Cross-tolerance between opioid mediated stimulation-produced and stress-induced analgesia. Society for Neuroscience Abstracts, 8, 619.Google Scholar
  78. Pert, A., and Walter, M. (1976). Comparison between naloxone reversal of morphine and electrical stimulation induced analgesia in the rat mesencephalon. Life Sciences, 19, 1023–1032.PubMedCrossRefGoogle Scholar
  79. Peters, L. J., and Mason, K. A. (1979). Influence of stress on experimental cancer. In B. A. STOLL (Ed.), Mind and cancer prognosis. New York: Wiley, pp. 103–124.Google Scholar
  80. Prieto, G. J., Cannon, J. T., and Liebeskind, J. C. (1983). N raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat. Brain Research, 261, 53–57.PubMedCrossRefGoogle Scholar
  81. Reynolds, D. V. (1969). Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science, 164, 444–445.PubMedCrossRefGoogle Scholar
  82. Richardson, D. D., and Akil, H. (1977). Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. Journal of Neurosurgery, 47, 184–194.PubMedCrossRefGoogle Scholar
  83. Rossier, J., French, E. D., Rivier, C., Ling, N., Guillemin, R., and Bloom, F. E. (1977). Foot-shock induced stress increases 13-endorphin levels in blood but not brain. Nature, 270, 618–620.PubMedCrossRefGoogle Scholar
  84. Rossler, J., Guillemin, R., and Bloom, F. E. (1978). Foot-shock induced stress decreases leu5enkephalin immunoreactivity in rat hypothalamus. European Journal of Pharmacology, 48, 465–466.CrossRefGoogle Scholar
  85. Satoh, M., Akaike, A., Nakazawa, T., and Takagi, H. (1980). Evidence for involvement of separate mechanisms in the production of analgesia by electrical stimulation of the nucleus reticularis paragigantocellularis and nucleus raphe magnus in the rat. Brain Research, 194, 525–529.PubMedCrossRefGoogle Scholar
  86. Schwartz, J. C., Barbin, G., Duchemin, A. M., Garbarg, M., Pollard, H., and Quach, T. T. (1981). Functional role of histamine in the brain. In G. C. PALMER (Ed.), Neuropharmacology of central nervous system and behavioral disorders. New York: Academic Press, pp. 539–570.Google Scholar
  87. Selye, H. (1956). The stress of life. New York: McGraw-Hill.Google Scholar
  88. Shavit, Y., Lewis, J. W., Terman, G. W., Gale, R. P., and Liebeskind, J. C. (1983a). Endogenous opioids may mediate the effects of stress on tumor growth and immune function. Proceedings of the Western Pharmacology Society, 26, 53–56.PubMedGoogle Scholar
  89. Shavit, Y., Lewis, J. W., Terman, G. W., Gale, R. P., and Liebeskind, J. C. (1984a). Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science, 223, 188–190.PubMedCrossRefGoogle Scholar
  90. Shavit, Y., Ryan, S. M., Lewis, J. C., Laudenslager, M. L., Terman, G. W., Maier, S. F., Gale, R. P., and Liebeskind, J. C. (1983b). Inescapable but not escapable stress alters immune function. Physiologist,26, A-64.Google Scholar
  91. Shavit, Y., Terman, G. W., Martin, F. C., Gale, R. P., and Liebeskind, J. C. (1984b). Naltrexone-sensitive suppression of the immune system’s natural killer cells by morphine. Society for Neuroscience Abstracts, 10, 726.Google Scholar
  92. Sklar, L. S., and Anisman, H. (1979). Stress and coping factors influence tumor growth. Science, 205, 513–515.PubMedCrossRefGoogle Scholar
  93. Taylor, A. N., Branch, B. J., Liu, S. H., and Kokka, N. (1982). Long-term effects of fetal ethanol exposure on pituitary-adrenal response to stress. Pharmacology, Biochemistry, and Behavior, 16, 585–589.Google Scholar
  94. Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1981). Monoaminergic mechanisms of stress analgesia. Society for Neuroscience Abstracts, 7, 879.Google Scholar
  95. Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1982a). Role of the biogenic amines in stress analgesia. Proceedings of the Western Pharmacology Society, 25, 7–10.PubMedGoogle Scholar
  96. Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1982b). Evidence for the involvement of histamine in stress analgesia. Society for Neuroscience Abstracts, 8, 619.Google Scholar
  97. Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1983a). Opioid and nonopioid mechanisms of stress analgesia: Lack of cross-tolerance between stressors. Brain Research, 206, 147–150.CrossRefGoogle Scholar
  98. Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1983b). The sensitivity of opioid-mediated stress analgesia to narcotic antagonists. Proceedings of the Western Pharmacology Society, 26, 49–52.Google Scholar
  99. Terman, G. W., Shavit, Y., Lewis, J. W., Cannon, J. T., and Liebeskind, J. C. (1984). Intrinsic mechanisms of pain inhibition and their activation by stress. Science, 226, 1270–1277.PubMedCrossRefGoogle Scholar
  100. Torda, C. (1978). Effects of recurrent postnatal pain-related stressful events on opiate receptor-endogenous ligand system. Psychoneuroendocrinology, 3, 85–91.PubMedCrossRefGoogle Scholar
  101. Tricklebank, M. D., Hutson, P. H., and Curzon, G. (1982). Analgesia induced by brief footshock is inhibited by 5-hydroxytryptamine but unaffected by antagonists of 5hydroxytryptamine or by naloxone. Neuropharmacology, 21, 51–56.PubMedCrossRefGoogle Scholar
  102. Urca, G., and Liebeskind, J. C. (1979). Electrophysiological indices of opiate action in awake and anesthetized rats. Brain Research, 161, 162–166.PubMedCrossRefGoogle Scholar
  103. Visintainer, M. A., Volpicelli, J. R., and Seligman, E. P. (1982). Tumor rejection in rats after inescapable or escapable shock. Science, 216, 437–439.PubMedCrossRefGoogle Scholar
  104. Viveros, O. H., Diliberto, E. J., JR., Hazum, E., and Chang, K.-J. (1980). Enkephalins as possible adrenomedullary hormones: Storage, secretion, and regulation of synthesis. In E. COSTA and M. TRABUCCHI (Eds.), Neural peptides and neuronal communication. New York: Raven Press, pp. 191–201.Google Scholar
  105. Viveros, O. H., and Wilson, S. P. (1983). The adrenal chromaffin cell as a model to study the co-secretion of enkephalins and catecholamines. Journal of the Autonomous Nervous System, 7, 41–58.CrossRefGoogle Scholar
  106. Watkins, L. R., Cobelli, D. A., and Mayer, D. J. (1982b). Opiate vs. non-opiate footshock analgesia (FSIA): Descending and intraspinal components. Brain Research, 245, 97106.Google Scholar
  107. Watkins, L. R., Cobelli, D. A., Newsome, H. H., andMayer, D. J. (1982c). Footshock induced analgesia is dependent neither on pituitary nor sympathetic activation. Brain Research, 245, 81–96.PubMedCrossRefGoogle Scholar
  108. Watkins, L. R., and Mayer, D. J. (1982). The organization of endogenous opiate and non-opiate pain control systems. Science, 216, 1185–1192.PubMedCrossRefGoogle Scholar
  109. Watson, S. J., Akil, H., and Barchas, J. D. (1979). Immunohistochemical and biochemical studies of the enkephalins, 3-endorphin and related peptides. In E. USDIN, W. E. BUNNEY, and N. S. KLINE (Eds.), Endorphins in mental health research. New York: Oxford University Press, pp. 30–44.Google Scholar
  110. Yaksh, T. L, and Rudy, T. A. (1978). Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain, 4, 299–359.PubMedCrossRefGoogle Scholar
  111. Yaksh, T. L., Yeung, J. C., and Rudy, T. A. (1976). An inability to antagonize with naloxone the elevated thresholds resulting from electrical stimulation of the mesencephalic central gray. Life Sciences, 18, 1193–1198.PubMedCrossRefGoogle Scholar
  112. Young, R. F., Feldman, R. A., Kroening, R., Fulton, W., and Morris, J. (1984). Electrical stimulation of the brain in the treatment of chronic pain in man. In L. KRUGER and J. C. LIEBESKIND (Eds.), Neural mechanisms of pain. Advances in Pain Research and Therapy, Vol. 6. New York: Raven Press, pp. 289–303.Google Scholar
  113. Zorman, G., Hentall, I. D., Adams, J. E., and Fields, H. L. (1981). Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Research, 219, 137148.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • James W. Lewis
    • 1
  • Linda R. Nelson
    • 2
  • Gregory W. Terman
    • 2
  • Yehuda Shavit
    • 2
  • John C. Liebeskind
    • 2
  1. 1.Mental Health Research InstituteUniversity of MichiganAnn ArborUSA
  2. 2.Department of Psychology and Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations