Practical Remarks on the Estimation of Dimension and Entropy from Experimental Data

  • Jean Guy Caputo
Part of the NATO ASI Series book series (NSSB, volume 208)


For non-linear dissipative dynamical system, invariant sets have volume zero in phase-space, and trajectories possess the property of sensitivity to initial conditions. The geometry and dynamics can be characterised by quantities, dimensions and entropies which will be invariant under a large class of coordinate changes. To calculate these quantities from experimental data one needs to imbed the data in R n . These projections generically are diffeomorphisms for n sufficiently large [1,2]. In practice, they are done using time-delays see [3] for example or building vectors from measurements in different locations. However the geometrical structure of these projections sets will determine the values obtained in practice for the dimensions and entropies. For simple model systems these sets can be studied in a semi-quantitative way using the Grassberger-Procaccia correlation integral [4]. This yields some criterions on the choice of the distance in R n , the different parameters: the number of vectors N and averages m, the sampling period, the embedding dimension and the delay. Deterministic chaotic data are projected onto manifolds which are locally the product of cantor sets and smooth manifolds, it will be shown that the curvature of these sets caused by the divergence of trajectories becomes predominant for the determination.


Lyapunov Exponent Sine Wave Periodic Data Stochastic Data Chaotic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Mane in “dynamical systems and turbulence 1980” Lecture Notes in Math. Springer-Verlag, New-York 898, 230 (1981)MathSciNetGoogle Scholar
  2. [2]
    F. Takens in Ref. 366Google Scholar
  3. [3]
    H.Froehling,J. P. Crutchfield, D. Farmer, N.Packard and R. shaw Physica 3D 605 (1981)Google Scholar
  4. [4]
    P. Grassberger and I. Procaccia Phys. Rev. Lett. 50 346Google Scholar
  5. [5]
    C. Lausberg PhD. doctoral dissertation, University of Grenoble (1987)Google Scholar
  6. [6]
    P.Grassberger Phys. Lett. 97A 227 (1983)G. Hentchell and I. Procaccia Physica 8D 435 (1983)Google Scholar
  7. [7]
    M. Henon Comm. Math. Phys. 50 69 (1976)CrossRefGoogle Scholar
  8. [8]
    N.Abraham, A Albano, R. Das,G. DeGuzman, S.Yong, R. Gioggia, G. Puccioni and G. Tredicce Phys. Lett. 114A 217 (1986)CrossRefGoogle Scholar
  9. [9]
    M. Mackey and L. Glass Science 197 287 (1977)CrossRefGoogle Scholar
  10. [10]
    J. Haystadt and C. Ehlers Phys. Rev. A 39,nó. 2 845 (1989)Google Scholar
  11. [11]
    D. Farmer Physica 4D 366 (1982)MathSciNetzbMATHGoogle Scholar
  12. [12]
    J. Theiler Phys. Rev. A 36,nó. 9 4456 (1987)MathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Mayer-Kress in “directions in Chaos, Vol. 3 of World Scientific Series on Directions in Condensed Matter Physics” edited by Hao Bai Lin World Scientific, Singapore (1987)Google Scholar
  14. [14]
    J.G. Caputo, B. Malraison and P. Atten to be publishedGoogle Scholar
  15. [15]
    J. D. Crawford and S. Omohundro Physica 13D 161 (1984)MathSciNetzbMATHGoogle Scholar
  16. [16]
    P. Grassberger and I. Procaccia Phys. Rev. A 28, 2591 (1983)CrossRefGoogle Scholar
  17. [17]
    J.G. Caputo and P. Atten Phys. Rev. A 35,nó. 3 1311 (1987)Google Scholar
  18. [18]
    F. Takens pre-printGoogle Scholar
  19. [19]
    P. Atten, J.G. Caputo, B. Malraison and Y. Gagne Journal de Mecanique Theorique et Appliquee Special Issue: Bifurcations and Chaotic behavior 133 (1984)Google Scholar
  20. [20]
    G. Broggi J. Opt. Soc. Am. B, Vol 5,nb. 5, 1020 (1988)Google Scholar
  21. [21]
    J.G. Caputo, B. Malraison and P. Atten in “dimensions and entropies in chaotic systems” Springer Series in Synergetics, Springer-Verlag, 32, 180 (1986)MathSciNetGoogle Scholar
  22. [22]
    E. Lorenz J. Atm. Sci., Vol. 20, 130 (1963)CrossRefGoogle Scholar
  23. [23]
    J. Theiler pre-printGoogle Scholar
  24. [24]
    V. Franceschini Physica 6D 285 (1983)MathSciNetzbMATHGoogle Scholar
  25. [25]
    R. Tavakol and A. S. Tworkovski Physics Letters 102A 273 (1984)MathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Fraser and H. Swinney Phys. Rev. A 33 1134 (1986)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jean Guy Caputo
    • 1
  1. 1.LESPINSA de RouenMont-Saint-Aignan cedexFrance

Personalised recommendations