Advertisement

Characterization of Irregular Interfaces: Roughness and Self-Affine Fractals

  • Miguel A. Rubio
  • Andrew Dougherty
  • Jerry P. Gollub
Part of the NATO ASI Series book series (NSSB, volume 208)

Abstract

Many physical systems with complex spatiotemporal behavior give rise to structures with fractal geometries in phase space or real space1,2. The paradigm of such a fractal structure in phase space is the strange attractor appearing in the chaotic motion of a dissipative system. The structure of a strange attractor is statistically self-similar. Several techniques of evaluating the fractal dimension have been widely used3.

Keywords

Porous Medium Fractal Dimension Capillary Number Fractal Structure Chaotic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B., Mandelbrot, “The Fractal Geometry of Nature”, Freeman, New York (1982).zbMATHGoogle Scholar
  2. 2.
    J. Feder, “Fractals”, Plenum Press, New York (1988).zbMATHGoogle Scholar
  3. 3.
    G. Mayer-Kress, “Dimensions and Entropies in Chaotic Systems”, Springer-Verlag, Berlin (1986).zbMATHCrossRefGoogle Scholar
  4. 4.
    P. Meakin, in: “Phase Transitions and Critical Phenomena”, Vol. 12, C. Domb and J.L. Lebowitz, eds., Academic Press, London (1988).Google Scholar
  5. 5.
    B. B. Mandelbrot, Phys. Scr;pta, 32: 257 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. E. Fisher, J. Chem. Soc.. Faraday Trans. 2, 82: 1569 (1986).Google Scholar
  7. 7.
    F. Family, J. Phys. A, 19: L441 (1986).CrossRefGoogle Scholar
  8. 8.
    B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot and S. W. Zucker, Phys. Rev.A, 39: 1500 (1989).MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. A. Rubio, C. Edwards, A. Dougherty and J. P. Gollub, to be published (1989).Google Scholar
  10. 10.
    A. Dougherty and J. P. Gollub, Phys. Rev. A, 38: 3043 (1988).CrossRefGoogle Scholar
  11. 11.
    S. R. Brown, Geophys. Res. Lett., 14: 1095 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Miguel A. Rubio
    • 1
    • 2
  • Andrew Dougherty
    • 1
  • Jerry P. Gollub
    • 1
    • 3
  1. 1.Physics DepartmentHaverford CollegeHaverfordUSA
  2. 2.Dept. Fisica FundamentalUniversidad Nacional de Educación a Distancia, AptdoMadridSpain
  3. 3.Physics DepartmentUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations