Skip to main content

Characterizing Spatio-Temporal Chaos in Electrodeposition Experiments

  • Chapter
Measures of Complexity and Chaos

Part of the book series: NATO ASI Series ((NSSB,volume 208))

Abstract

Pattern formation in systems far from equilibrium is a subject of considerable current interest1–5. Recently, much effort has been directed toward the study of fractal growth phenomena in physical, chemical and biological systems. Unfortunately, the understanding of phenomena like viscous fingering in Hele-Shaw cells6 and electrochemical deposition7 is hampered by the mathematical complexity of the problem. Highly ramified structures generally are produced in the zero surface tension limit. In this limit both processes are equivalent to the Stefan problem8: a diffusion problem for the pressure or the electrochemical potential, with boundary values specified on the moving interface, whose local velocity is in turn determined by the normal gradient of the Laplace field. This highly nonlinear problem is not readily amenable even to modern numerical simulations. When solving the Stefan problem by direct means, the interface develops unphysical cusps in a finite time6. One is thus led to introduce some short-distance cutoff which in some sense mimics surface-tension9,10. Thus far no computer simulations of the equations of motion achieve the necessary size to make definite conclusions about the deterministic character of the fractal patterns observed in the experiments1–5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. E. Stanley and N. Ostrowsky, eds., “On Growth and Form: Fractal and Non-Fractal Patterns in Physics”, Martinus Nijhof, Dordrecht (1986), and references quoted therein.

    Google Scholar 

  2. L. Pietronero and E. Tosati, eds., “Fractal in Physics”, North-Holland, Amsterdam (1986), and references quoted therein.

    Google Scholar 

  3. H. E. Stanley, ed., “Statphys 16”, North-Holland, Amsterdam (1986), and references quoted therein.

    Google Scholar 

  4. W.Guttinger and D. Dangelmayr, eds., “The Physics of Structure Formation”, Springer-Verlag, Berlin (1987), and references queted therein.

    Google Scholar 

  5. H. E. Stanley and N. Ostrowsky, eds., “Random Fluctuations and Pattern Growth”, Kluwer Academic Publisher, Dordrecht (1988), and references quoted therein.

    Google Scholar 

  6. D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman and Chao Tang, Rev. Mod. Phys. 58:977 (1986), and references quoted therein.

    Google Scholar 

  7. L. M. Sander, in ref. 4., p. 257.

    Google Scholar 

  8. L. Rubinstein, “The Stefan Problem”, A.M.S., Providence (1971).

    Google Scholar 

  9. L. M. Sander, P. Ramanlal and E. Ben Jacob, Phys. Rev. A 32: 3160 (1985).

    Article  Google Scholar 

  10. P. Ramanlal and L. M. Sander, J. Phys. A 21: L995 (1988).

    Article  Google Scholar 

  11. T. Witten and L. M. Sander, Phys. Rev. Lett. 47: 1400 (1981)

    Article  Google Scholar 

  12. T. Witten and L. M. Sander, Phys. Rev. B 27: 5686 (1983).

    Article  MathSciNet  Google Scholar 

  13. P. Meakin, in “Phase Transitions and Critical Phenomena”, Vol. 12, C. Domb and J. L. Lebowitz, eds., Academic Press, Orlando (1988), and references quoted therein.

    Google Scholar 

  14. P. Meakin, Phys. Rev. A 27: 1495 (1983).

    Article  MathSciNet  Google Scholar 

  15. P. Meakin and Z. R. Wasserman, Chem. Phys. 91: 391 (1984).

    Article  Google Scholar 

  16. P. Meakin and L. M. Sander, Phys. Rev. Lett. 54: 2053 (1985).

    Article  Google Scholar 

  17. R. C. Ball and R.M. Brady, J. Phys. A 18: L809 (1985).

    Article  Google Scholar 

  18. P. Meakin, Phys. Rev. A 33: 3371 (1986).

    Article  MathSciNet  Google Scholar 

  19. P. Meakin, R. C. Ball, P. Ramanlal and L. M. Sander, Phys. Rev. A 35: 5233 (1987).

    Article  Google Scholar 

  20. L. A. Turkevitch and H. Scher, Phys. Rev. Lett. 55: 1026 (1985).

    Article  MathSciNet  Google Scholar 

  21. R. C. Ball, Physica A 140: 62 (1986).

    Article  Google Scholar 

  22. T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56: 854 (1986).

    Article  Google Scholar 

  23. M. Matsushita, K. Konda, H. Toyoki, Y. Hayakawa and H. Kondo, J. Phys. Soc. Jpn. 55: 2618 (1986).

    Article  Google Scholar 

  24. R. M. Brady and R. C. Ball, Nature 309: 225 (1984).

    Article  Google Scholar 

  25. M. Matsushita, M. Sano, Y. Hayakawa, H. Hongo and Y. Sawada, Phys. Rev. Lett. 53: 286 (1984).

    Article  Google Scholar 

  26. M. Matsushita, Y. Hayakawa and Y. Sawada, Phys. Rev. A 32: 3814 (1985).

    Article  Google Scholar 

  27. D. Grier, E. Ben-Jacob, R. Clarke and L. M. Sander, Phys. Rev. Lett. 56: 1264 (1986).

    Article  Google Scholar 

  28. H. E. Stanley, in ref. 4, p. 210.

    Google Scholar 

  29. J. Nittmann and H. E. Stanley, Nature 321: 663 (1986).

    Article  Google Scholar 

  30. J. Nittmann and H. E. Stanley, J. Phys. A 20: L1185 (1987).

    Article  MathSciNet  Google Scholar 

  31. L. M. Sander, in ref. 2, p. 241.

    Google Scholar 

  32. F. Argoul and A. Arneodo, Deterministic chaos in two-dimensional electrodeposition processes, preprint (July 1989), to be published.

    Google Scholar 

  33. F. Argoul, A. Arneodo, J. Elezgaray and G. Grasseau, Lacunarity of the growth probability distribution in diffusion-limited aggregation processes, preprint (June 1989), to be published.

    Google Scholar 

  34. J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields”, Springer-Verlag, Berlin (1983), and references quoted therein.

    Google Scholar 

  35. P. Cvitanovic, ed., “Universality in Chaos”, Bulger, Bristol (1984), and references quoted therein.

    Google Scholar 

  36. Bai-Lin Hao, ed., “Chaos”, World Scientific, Singapore (1984), and references quoted therein.

    Google Scholar 

  37. H. G. Schuster, “Deterministic Chaos”, Physik-Verlag, Weinheim (1984), and references quoted therein.

    Google Scholar 

  38. A. V. Holden, ed., “Chaos”, Manchester University Press, Manchester (1986), and references quoted therein.

    Google Scholar 

  39. P. Berge, Y. Pomeau and C. Vidal, “Order within Chaos”, Wiley, New-York (1986), and references quoted therein.

    Google Scholar 

  40. H. B. Stewart, “Nonlinear Dynamics and Chaos”, Wiley, New-York (1986) and references quoted therein.

    Google Scholar 

  41. P. Berge, ed., “Le Chaos: Théorie et Expériences”, Collection du C.E.A., Eyrolles (1988), and references quoted therein.

    Google Scholar 

  42. P. Meakin and S. Havlin, Phys. Rev. A 36: 4428 (1987).

    Article  Google Scholar 

  43. A. Renyi, “Probability Theory”, North-Holland, Amsterdam (1970).

    Google Scholar 

  44. P. Grassberger, Phys. Lett. A 97: 227 (1983).

    Article  MathSciNet  Google Scholar 

  45. H. G. Hentschel and I. Procaccia, Physica D 8: 435 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Grassberger and I. Procaccia, Physica D 13: 34 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  47. E. B. Vul, Ya. G. Sinai and K. M. Khanin, Usp. Mat. Nauk. 39: 3 (1984).

    MathSciNet  Google Scholar 

  48. E. B. Vul, Ya. G. Sinai and K. M. Khanin, J. Russ. Math. Surv. 39: 1 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Benzi, G. Paladin, G. Parisi and A. J. Vulpiani, J. Phys. A 17: 3521 (1984).

    Article  MathSciNet  Google Scholar 

  50. G. Parisi, in U. Frisch, Fully developped turbulence and intermittency, in “Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics”, M. Ghill, R. Benzi and G. Parisi, eds, North-Holland, Amsterdam (1985) p. 84.

    Google Scholar 

  51. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, Phys. Rev. A 33: 1141 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Collet, J. Lebowitz and A. Porzio, J. Stat. Phys. 47: 609 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Argoul, A. Arneodo, G. Grasseau and H. L. Swinney, Phys. Rev. Lett. 61: 2558 (1988).

    Article  Google Scholar 

  54. F. Argoul, A. Arneodo, J. Elezgaray, G. Grasseau and R. Murenzi, Wavelet transform analysis of the self-similarity of diffusion-limited aggregates and electrode-position clusters, preprint (June 1989), to be published.

    Google Scholar 

  55. F. Argoul, A. Arneodo, J. Elezgaray, G. Grasseau and R. Murenzi, Phys. Lett. A 135: 327 (1989).

    Article  MathSciNet  Google Scholar 

  56. J. M. Combes, A. Grossmann and P. Tchamitchian, eds, “Wavelets, Time-Frequency Methods and Phase Space”, Springer-Verlag, Berlin (1989), and references quoted therein.

    Google Scholar 

  57. M. Holschneider J. Stat. Phys. 50: 963 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Arneodo, G. Grasseau and M. Holschneider, Phys. Rev. Lett. 61: 2281 (1988).

    Article  MathSciNet  Google Scholar 

  59. A. Arneodo, G. Grasseau and M. Holschneider, in ref. 54, p. 182.

    Google Scholar 

  60. A. Arneodo, F. Argoul, J. Elezgaray and G. Grasseau, in “Nonlinear Dynamics”, G. Turchetti, ed., World Scientific, Singapore (1989) p. 130.

    Google Scholar 

  61. S. K. Ma, “Modern Theory of Critical Phenomena”, Benjamin Reading, Mass. (1976).

    Google Scholar 

  62. D. Amit, “Field Theory, The Renormalisation Group and Critical Phenomena”, Mc Graw-Hill, New-York (1978).

    Google Scholar 

  63. K. G. Wilson, Rev. Mod. Phys. 55: 583 (1983).

    Article  Google Scholar 

  64. I. Procaccia and R. Zeitak, Phys. Rev. Lett. 60: 2511 (1988).

    Article  MathSciNet  Google Scholar 

  65. A. Arneodo, Y. Couder, G. Grasseau, V. Hakim and M. Rabaud, Uncovering the analytical Saffman-Taylor finger in unstable viscous fingering and diffusion-limited aggregation, preprint (April 1989), to be published.

    Google Scholar 

  66. P. Meakin, Phys. Rev. A 34: 710 (1986).

    Article  MathSciNet  Google Scholar 

  67. P. Meakin, Phys. Rev. A 35: 2234 (1987).

    Article  Google Scholar 

  68. C. Amitrano, A. Coniglio and F. diLiberto, Phys. Rev. Lett. 57: 1016 (1986).

    Article  Google Scholar 

  69. P. Meakin, A. Coniglio, H. E. Stanley and T. A. Witten, Phys. Rev. A 34: 3325 (1986).

    Article  MathSciNet  Google Scholar 

  70. Y. Hayakawa, S. Sato and M. Matsushita, Phys. Rev. A 36: 1963 (1987).

    Article  Google Scholar 

  71. T. Nagatani, Phys. Rev. A 36: 5812 (1987).

    Article  Google Scholar 

  72. R. Ball and M. Blunt, Phys. Rev. A 39: 3591 (1989).

    Article  MathSciNet  Google Scholar 

  73. J. Nittmann, H. E. Stanley, E. Touboul and G. Daccord, Phys. Rev. Lett. 58: 619 (1987).

    Article  Google Scholar 

  74. S. Ohta and H. Hongo, Phys. Rev. Lett. 60: 611 (1988).

    Article  Google Scholar 

  75. M. Blunt and P. King, Phys. Rev. A 37: 3935 (1988).

    Article  Google Scholar 

  76. T. Bohr, P. Cvitanovic and M. H. Jensen, Europhys. Lett. 6: 445 (1988).

    Article  Google Scholar 

  77. J. Lee and H. E. Stanley, Phys. Rev. Lett. 61: 2945 (1988).

    Article  Google Scholar 

  78. R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62: 2977 (1989).

    Article  Google Scholar 

  79. J. D. Farmer, in “Fluctuations and Sensitivity in Nonequilibrium Systems”, W. Horstemke and D. Kondepudi, eds, Springer-Verlag, New-York (1984), p. 172.

    Chapter  Google Scholar 

  80. D. K. Umberger and J. D. Farmer, Phys. Rev. Lett. 55:661 (1985):

    Google Scholar 

  81. C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke, Phys. Lett. A 110: 1 (1985).

    Article  MathSciNet  Google Scholar 

  82. K. Nakamura, Y. Okazaki and A. R. Bishop, Phys. Lett. A 117: 459 (1986).

    Article  Google Scholar 

  83. R. Eykholt and D. K. Umberger, Phys. Rev. Lett. 57: 2333 (1986)

    Article  MathSciNet  Google Scholar 

  84. R. Eykholt and D. K. Umberger, Physica D 30: 43 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  85. N. G. Makarov, Proc. London Math. Soc. 51: 369 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  86. A. Douady and J. H. Hubbard, C. R. Acad. Sci. (Paris) 294: 123 (1982).

    MathSciNet  MATH  Google Scholar 

  87. A. Douady, private communication.

    Google Scholar 

  88. D. G. Grier, D. A. Kessler and L. M. Sander, Phys. Rev. Lett. 59: 2315 (1987).

    Article  Google Scholar 

  89. Y. Sawada, A. Dougherty and J. P. Gollub, Phys. Rev. Lett. 56: 1260 (1986).

    Article  Google Scholar 

  90. R. M. Suter and P. Wong, Nonlinear oscillations in electrochemical dendritic growth, preprint (July 1987).

    Google Scholar 

  91. J. E. Marsden and M. McCracken, “Hopf Bifurcation and its Applications”, Applied Math. Sci. 19, Springer, New-York (1976).

    Book  MATH  Google Scholar 

  92. C. Vidal and A. Pacault, eds, “Nonlinear Phenomena in Chemical Dynamics”, Springer-Verlag, Berlin (1981) and references quoted therein.

    Google Scholar 

  93. C. Vidal and A. Pacault, eds, “Nonequilibrium Dynamics in Chemical Systems”, Springer-Verlag, Berlin (1984) and references quoted therein.

    Google Scholar 

  94. J. C. Roux, P. Richetti, A. Arneodo and F. Argoul, J. Mec. Th. amp; Appl., numéro spécial: “Bifurcations et Comportements Chaotiques” (1984) p. 77.

    Google Scholar 

  95. A. Arneodo, F. Argoul, P. Richetti and J. C. Roux, in “Dynamical Systems and Environmental Models”, H. G. Bothe, W. Ebeling, A. M. Zurzhanski and M. Peschel, Akademie-Verlag, Berlin (1987) p. 122.

    Google Scholar 

  96. F. Argoul, A. Arneodo, P. Richetti, J. C. Roux and H. L. F. Swinney, Acc. Chem. Res. 20: 436 (1987).

    Article  Google Scholar 

  97. N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw, Phys. Rev. Lett. 45: 712 (1980).

    Article  Google Scholar 

  98. F. Takens, Lect. Notes in Maths. 898: 366 (1981).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Argoul, F., Arneodo, A., Elezgaray, J., Grasseau, G. (1989). Characterizing Spatio-Temporal Chaos in Electrodeposition Experiments. In: Abraham, N.B., Albano, A.M., Passamante, A., Rapp, P.E. (eds) Measures of Complexity and Chaos. NATO ASI Series, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0623-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0623-9_60

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0625-3

  • Online ISBN: 978-1-4757-0623-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics