Experimental Study of the Multifractal Structure of the Quasiperiodic Set

  • Dwight Barkley
  • Andrew Cumming
Part of the NATO ASI Series book series (NSSB, volume 208)


A periodically driven relaxation-oscillator circuit is used to experimentally study the multifractal structure of the quasiperiodic set at the transition to chaos. Using the thermodynamic formalism to quantify the complex scaling of this set, we are able to efficiently compare experimental results with numerical results obtained from the sine circle map.


Partition Function Critical Line Legendre Transformation Thermodynamic Formalism Fine Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).zbMATHCrossRefGoogle Scholar
  2. 2.
    U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi, and G. Parisi ( North-Holland, Amsterdam, 1985 ), p. 84.Google Scholar
  3. 3.
    H. G. E. Hentschel and I. Procaccia, Physica 8D, 435 (1983).MathSciNetzbMATHGoogle Scholar
  4. 4.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett. 56, 854 (1986).CrossRefGoogle Scholar
  6. 6.
    D. J. Farmer, Physica 4D, 366 (1982).MathSciNetzbMATHGoogle Scholar
  7. 7.
    R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A 17, 3521 (1984).Google Scholar
  8. 8.
    A. Renyi, Probability Theory, ( North-Holland, Amsterdam, 1970 ).Google Scholar
  9. 9.
    M. J. Feigenbaum, M. H. Jensen, and I. Procaccia, Phys. Rev. Lett. 57, 1503 (1986).MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. H. Jensen, L. P. Kadanoff, and I. Procaccia, Phys. Rev. A 36, 1409 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, Phys. Rev. Lett. 55, 2798 (1985).CrossRefGoogle Scholar
  12. 12.
    D. Katzen, and I. Procaccia, Phys. Rev. Lett. 58, 1169 (1987).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. H. Jensen, P. Bak, and T. Bohr, Phys. Rev. Lett. 50, 1637 (1983).CrossRefGoogle Scholar
  14. 14.
    R. Artuso, P. Cvitanovie, and B. G. Kenny, Phys. Rev. A 39, 268 (1989).MathSciNetCrossRefGoogle Scholar
  15. 15.
    P. Cvitanovié, B. Shraiman, and B. Söderberg, Phys. Scr. 32, 263 (1985).CrossRefGoogle Scholar
  16. 16.
    A. Cumming and P. S. Linsay, Phys. Rev. Lett. 59, 1633 (1987).CrossRefGoogle Scholar
  17. 17.
    A. Cumming, Ph.D. Thesis, Massachusetts Institute of Technology (1988).Google Scholar
  18. 18.
    D. Barkley and A. Cumming (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Dwight Barkley
    • 1
  • Andrew Cumming
    • 2
  1. 1.Applied MathematicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations