Advertisement

Weak Turbulence and the Dynamics of Topological Defects

  • Itamar Procaccia
Part of the NATO ASI Series book series (NSSB, volume 208)

Abstract

Low dimensional chaos appears in physical systems whose spatial extent is small. In large aspect-ratio systems chaos sets in concurrently with the loss of spatial coherencel, leading to a state known as weak turbulence, whose description with low dimensional dynamical systems theory seems at present impossible. Typically, the spatial correlations are destroyed by the spontaneous generation of defects in the macroscopic patterns, and the dynamics of these defects is responsible for much of the chaotic motion in such systems.

Keywords

Gauge Field Nematic Liquid Crystal Chaotic Motion Topological Defect Weizmann Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ahlers and R.P. Behringer, Phys.Rev.Lett. 40: 712 (1978);CrossRefGoogle Scholar
  2. J.P. Gollub and R.K. Steinman, Phys.Rev.Lett. 47: 505 (1981);CrossRefGoogle Scholar
  3. G. Ahlers, D.S. Cannell and V. Steinberg, Phys.Rev.Lett. 54: 1373 (1985);CrossRefGoogle Scholar
  4. A. Pocheau, V. Croquette and O. LeGal, Phys.Rev.Lett. 55: 1099 (1985);CrossRefGoogle Scholar
  5. P. Coullet, L. Gil and J. Lega, Phys.Rev.Lett. 62: 1619 (1989).CrossRefGoogle Scholar
  6. 2.
    G. Goren, I. Procaccia, S. Rasenat and V. Steinberg, Phys.Rev.Lett., in press.Google Scholar
  7. 3.
    G. Goren and I. Procaccia, submitted to Nonlinearity.Google Scholar
  8. 4.
    S. Rasenat and V. Steinberg, in preparation.Google Scholar
  9. 5.
    Similar observations of weak turbulence in nematics were reported before. See for example R. Ribota and A. Joets in Cellular Structures and Instabilities, eds. J.E. Westfreid and S. Zaleski ( Springer, Berlin 1984 ).Google Scholar
  10. 6.
    A.L. Nowel and J.A. Whitehead, J.Fluids Mech. 38: 279 (1969);CrossRefGoogle Scholar
  11. L.A. Segel, J.Fluid Mech. 38: 203 (1969).zbMATHCrossRefGoogle Scholar
  12. 7a).
    E.D. Siggia and A. Zippelius, Phys.Rev.A 24: 1036 (1981);CrossRefGoogle Scholar
  13. b).
    A. Zippelius and B. Siggia, Phys.Fluids 26: 2906 (1983);CrossRefGoogle Scholar
  14. c).
    Y. Pomeau, S. Zaleski and P. Manne-ville, Phys.Rev.A 27: 2710 (1983);MathSciNetCrossRefGoogle Scholar
  15. d).
    G. Tesauro and M.C. Cross, Phys.Rev.A 34: 1363 (1986).CrossRefGoogle Scholar
  16. 8.
    I.E. Dzyaloshinskii, in “Physics of Defects”, eds. R. Balian, M. Kleman and J.-P. Poirier ( North Holland, Amsterdam 1981 ).Google Scholar
  17. 9.
    K. Kawasaki, Prog.Theor.Phys.Suppl. 79: 161 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Itamar Procaccia
    • 1
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations