Amplitude Equations for Hexagonal Patterns of Convection in Non-Boussinesq Fluids

  • C. Pérez-García
  • E. Pampaloni
  • S. Ciliberto
Part of the NATO ASI Series book series (NSSB, volume 208)


Hexagonal patterns can be observed in a fluid heated from below, mainly in three situations: 1) when the upper surface has a temperature-dependent surface tension (Bénard-Marangoni convection)1, 2) when its transport coefficients vary with the temperature (non-Boussinesq convection)2 and 3) under a modulated heating.3 Convective patterns can be described by means of the so-called amplitude equations, that are obtained either from the hydrodynamic equations 4or simply from symmetry arguments.5 This system of equations is simpler than the hydrodynamic nonlinear equation and it is easily simulated in computers.6


Nusselt Number Rayleigh Number Hydrodynamic Equation Normalize Nusselt Number Critical Rayleigh Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    H. Bénard, Rev. Gén. Sci. Pur Appl., 11, 1261, 1309 (1900)Google Scholar
  2. A. Cloot and G. Lebon, J. Fluid Mech., 145, 447 (1984)zbMATHCrossRefGoogle Scholar
  3. P. Cerisier, C. Pérez-García, C. Jamond and J. Pantaloni, Phys. Rev. A, 35, 1949 (1987)CrossRefGoogle Scholar
  4. (2).
    F. H. Busse, J. Fluid Mech., 30, 625 (1967)zbMATHCrossRefGoogle Scholar
  5. M. Dubois, P. Berge and J.E. Wesfreid, J.Physique, 39, 1253 (1978)CrossRefGoogle Scholar
  6. S. Ciliberto, E. Pampaloni and C. Pérez-Garcia, Phys. Rev. Lett., 61, 1198 (1988)CrossRefGoogle Scholar
  7. (3).
    M.N. Roppo, S.H. Davis and S. Rosenblatt, Phys. Fluids, 27, 796 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  8. P.C. Hohenberg and J.B. Swift, Phys. Rev. A, 35, 3855 (1987)MathSciNetCrossRefGoogle Scholar
  9. C.W. Meyer, D.S. Cannell, G. Ahlers, J.B. Swift and P.C. Hohenberg, Phys. Rev. Lett., 61, 947 (1988)CrossRefGoogle Scholar
  10. (4).
    A.C. Newell and J.A. Whitehead, J. Fluid. Mech., 38, 279 (1969)zbMATHCrossRefGoogle Scholar
  11. L.A. Segel, J. Fluid Mech., 38, 203 (1969)zbMATHCrossRefGoogle Scholar
  12. (5).
    P. Coullet, these Proceedings.Google Scholar
  13. (6).
    M. Bestehorn and H. Haken, Z. Physik, 57, 329 (1984)Google Scholar
  14. (7).
    M.S. Heutmaker, P.N. Fraenkel and J.P. Gollub, Phys. Rev. Lett, 54, 1369 (1985)CrossRefGoogle Scholar
  15. (8).
    G. Ahlers, M.C. Cross, P.C. Hohenberg and S. Safran, J. Fluid Mech., 110, 297 (1981)zbMATHCrossRefGoogle Scholar
  16. (9).
    G. Ahlers, J. Fluid Mech., 98, 137 (1980)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. Pérez-García
    • 1
    • 2
  • E. Pampaloni
    • 3
  • S. Ciliberto
    • 3
  1. 1.Dept. FísicaUniv. Autònoma BarcelonaBellaterra, CataloniaSpain
  2. 2.Departamento de FísicaUniversidad de NavarraPamplona, NavarraSpain
  3. 3.Istituto Nazionale di OtticaFirenzeItaly

Personalised recommendations