Lyapunov Exponents, Dimension and Entropy in Coupled Lattice Maps

  • R. M. Everson
Part of the NATO ASI Series book series (NSSB, volume 208)


Recent years have seen advances in understanding of complex dynamics and chaos displayed by rather simple systems. Some routes to chaos are now well understood and have been observed experimentally in diverse fields. Quantitative measures of the chaos, principally Lyapunov exponents, dimensions and entropies12have been developed and used to connect theory and experiment.


Lyapunov Exponent Entropy Density Dimension Density Upstream Boundary Positive Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Brindley and R.M. Everson, “Disturbance propagation in coupled lattice maps,” Phys. Lett. A 134 (1989), 229 – 236.CrossRefGoogle Scholar
  2. 2.
    P. Coullet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, Birkhauser, Basel, 1980.Google Scholar
  3. 3.
    J.P. Crutchfield and K. Kaneko, “Phenomenology of Spatio-Temporal Chaos,” in Directions in Chaos, H. Bai-lin., ed., World Scientific Publishing Co., Singapore, 1987Google Scholar
  4. 4.
    R.J. Deissler, “Turbulent Bursts, Spots and Slugs in a Generalised Ginzburg-Landau Equation,” Phys. Lett. A l20A(1987), 334-340.Google Scholar
  5. 5.
    R.J. Deissler and K. Kaneko, “Velocity-Dependent Liapunov Exponents as a Measure of Chaos in Open Systems,” Los Alamos National Labs., Los Alamos Report, 1985.Google Scholar
  6. 6.
    R.M. Everson, “Detection and description of deterministic chaotic systems,” Leeds Univ., PhD Thesis, Leeds, 1988.Google Scholar
  7. 7.
    R.N. Everson, “Lyapunov Exponents, Dimension and Entropy in Coupled Lattice Maps,” Phys. Rev. A (3)(1989), (Submitted).Google Scholar
  8. 8.
    C. Fois, O.P. Manley, R. Temam and Y.M. Treve, “Asymptotic analysis of the Navier-Stokes equations,” Phys. D 9D (1983), 157 – 188.MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Grassberger, “Information content and predictability of lumped and distributed dynamical systems,” University of Wuppertal Report, 1987.Google Scholar
  10. 10.
    P. Huerre, in Instabilities and Nonequilibrium Structures, E. Tirapequi and D. Villaroel, eds., Reidel, Dordrecht, 1987, 141.Google Scholar
  11. 11.
    P. Manneville, “Liapunov exponents for the Kuramoto-Sivashinsky model,” in Macroscopic modelling in Turbulent Flows, H. Araki, J. Ehlers, K. Hepp, R. Kippenhahn, H.A. Weidenmuller & J. Zittartz, eds., Lect. Notes in Phys.#230, Springer-Verlag, New York-Heidelberg-Berlin, 1985, 390.Google Scholar
  12. 12.
    G. Mayer-Kress, Dimensions and Entropies in Chaotic Systems, Springer-Verlag, New York-Heidelberg-Berlin, 1986.zbMATHCrossRefGoogle Scholar
  13. 13.
    M.V. Morkovin, “Recent insights into instability and transition to turbulence in open-flow systems,” Langley Research Center, NASA, ICASE, Hampton, Virginia, 1988.Google Scholar
  14. 14.
    D. Ruelle, “Large Volume Limit of the Distribution of Characteristic Exponents in Turbulence,” Commun. Math. Phys. 87 (1982), 287 - 302.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    F. Takens, “Detecting Strange Attractors in Turbulence,” in Proc. Dynamical Systems and Turbulence, D.A. Rand & L-S. Young, eds., Springer-Verlag, New York-Heidelberg-Berlin, 1980, 366 – 381.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. M. Everson
    • 1
  1. 1.Center for Fluid Mechanics, Turbulence and ComputationBrown UniversityProvidenceUSA

Personalised recommendations