Hierarchies of Relations between Partial Dimensions and Local Expansion Rates in Strange Attractors

  • R. Badii
  • G. Broggi
Part of the NATO ASI Series book series (NSSB, volume 208)

Abstract

Connections between local partial dimensions and Lyapunov exponents in nonlinear dynamical systems are studied by using symbolic dynamics. Equations for the probabilities of symbol sequences are derived, based on the structure of the logic tree. These show that the dimension spectrum f(α) cannot be obtained in closed form from the sole knowledge of the local Lyapunov exponents.

Keywords

Periodic Orbit Lyapunov Exponent Invariant Measure Strange Attractor Symbol Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Grassberger and I. Procaccia, Physica 13D, 34 (1984).MathSciNetMATHGoogle Scholar
  2. [2]
    P. Grassberger, in Chaos in Astrophysics, J. Perdang et al. Eds. ( Reidi, Dortrecht, 1985 ).Google Scholar
  3. [3]
    R. Badii and A. Politi, Phys.Rev. A35, 1288 (1987).MathSciNetGoogle Scholar
  4. [4]
    P. Grassberger, R. Badii and A. Politi, J.Stat.Phys. 51, 135 (1988).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    R. Badii, Unfolding Complexity in Nonlinear Dynamical Systems,this issue; Quantitative Characterization of Complexity and Predictability,submitted for publication.Google Scholar
  6. [6]
    M.J. Feigenbaum, M.H. Jensen and I. Procaccia, Phys.Rev.Lett. 57, 1503 (1986).MathSciNetCrossRefGoogle Scholar
  7. [7]
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B. Shraiman, Phys.Rev. A33, 1141 (1986).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    G.H. Gunaratne and I. Procaccia, Phys.Rev.Lett. 59, 1377 (1987); G.H. Gunaratne, M.H. Jensen and I. Procaccia, Nonlinearity 1, 157 (1988); P. Cvitanovie, G.H. Gunaratne and I. Procaccia, Phys.Rev. A38, 1503 (1988); D. Auerbach, P. Cvitanovié, J.P. Eckmann, G.H. Gunaratne and I. Procaccia, Phys.Rev.Lett. 58, 2387 (1987).Google Scholar
  9. J.D. Farmer, E. Ott and J.A. Yorke, Physica 7D, 153 (1983).Google Scholar
  10. [10]
    R. Badii, Riv. Nuovo Cim. 12, N° 3, (1989).Google Scholar
  11. [11]
    V.N. Shtern, Dokl.Akad.Nauk. SSSR 270, 582 (1983).MathSciNetGoogle Scholar
  12. [12]
    P. Grassberger, Phys.Lett. 107A, 101 (1985).MathSciNetMATHCrossRefGoogle Scholar
  13. [13).
    J.P. Eckmann and D. Ruelle, Rev.Mod.Phys. 57, 617 (1985).MathSciNetCrossRefGoogle Scholar
  14. [14]
    J.L. Kaplan and J.A. Yorke, Lect.Not. Math. 13, 730 (1979); P. Fredrickson, J.L. Kaplan, E.D. Yorke and J.A. Yorke, J.Diff.Eqs. 49, 185 (1983).MathSciNetMATHGoogle Scholar
  15. [15]
    S. Newhouse, in Chaotic Behaviour of Deterministic Systems, G. Ioos, R.H.G. Helle-man and R. Stora Eds., North-Holland (1983).Google Scholar
  16. [16]
    A. Politi, R. Badii and P. Grassberger, J.Phys. A21, L763 (1988).MathSciNetGoogle Scholar
  17. [17]
    D. Rand, The Singularity Spectrum for Hyperbolic Cantor Sets and-Attractors, University of Arizona, preprint (1986); T. Bohr and D. Rand, Physica 25D, 387 (1987).Google Scholar
  18. [18]
    C. Grebogi, E. Ott and J.A. Yorke, Phys.Rev. A37, 1711 (1988).MathSciNetGoogle Scholar
  19. [19]
    M.A. Sepúlveda, R. Badii and E. Pollak, unpublished.Google Scholar
  20. [20]
    C. Grebogi, E. Ott and J.A. Yorke, Physica 7D, 181 (1983).MathSciNetGoogle Scholar
  21. [21]
    R. Badii, unpublished.Google Scholar
  22. [22]
    G. Pianigiani and J.A. Yorke, Trans.Am.Math.Soc. 252, 351 (1979).MathSciNetMATHGoogle Scholar
  23. [23]
    T. Tél, Phys.Lett. 119A, 65 (1986).MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    H. Kantz and P. Grassberger, Physica 17D, 75 (1985).MathSciNetMATHGoogle Scholar
  25. [25]
    Dimensions and Entropies in Chaotic Systems,G. Mayer-Kress Ed., Springer Series in Synergetics,32 (Springer, Berlin, 1986).Google Scholar
  26. [26]
    P. Grassberger and H. Kantz, Phys.Lett. 113A, 235 (1985).MathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Broggi and R. Badii, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. Badii
    • 1
    • 2
  • G. Broggi
    • 1
    • 2
  1. 1.Fakultät für PhysikUniversität KonstanzConstanceW.Germany
  2. 2.Physik-Institut der UniversitätZurichSwitzerland

Personalised recommendations