Advertisement

Some Remarks on Nonlinear Data Analysis of Physiological Time Series

  • A. Babloyantz
Part of the NATO ASI Series book series (NSSB, volume 208)

Abstract

The analysis of model as well as experimental time series has become very popular in recent years. Various procedures have been developed to evaluate such quantities as dimensions (1–3], entropies [1–2,4] or Lyapunov exponents [1–2,5]. These quantities furnish important information about the dynamics of some experimental systems where typically very few variables can be measured and not much is known about the complex dynamics underlying the time evolution of the system.

Keywords

Lyapunov Exponent Phase Portrait Chaotic Dynamic Correlation Dimension Chaotic Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P Eckmann and D. Ruelle, Rev. Mod. Phys. 57., 617 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Schuster: in “Deterministic Chaos” ( Physik-verlag, Weinheim, 1984 )zbMATHGoogle Scholar
  3. 3.
    P. Grassberger and I. Procaccia: Phys. Rev. Lett 50, 346 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Grassberger and I. Procaccia: Phys. Rev. A 21, 2591 (1983)Google Scholar
  5. 5.
    J.P Eckmann, S.O. Kamphorst, D. Ruelle and S. Ciliberto: Phys. Rev. A l4, 4971 (1986)MathSciNetGoogle Scholar
  6. 6.
    J.P Eckmann and D. Ruelle: Europhys. Lett 4, 973 (1987).CrossRefGoogle Scholar
  7. 7.
    N.H. Packard, J.P. Crutchfield, J.D. Farmer & R.S. Shaw: Phys. Rev. Lett 45, 712 (1980).CrossRefGoogle Scholar
  8. 8.
    F.Takens: in “Dynamical systems and turbulence”, Eds Rand, D.A. and Young, L.S., Lect. Notes in Math. 898, 366, Springer, Berlin (1981)Google Scholar
  9. 9.
    A. Babloyantz: submitted to Neuroscience (1989)Google Scholar
  10. 10.
    A.Babloyantz and A.Destexhe, Biological Cybernetics 58, 203 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A.Babloyantz and A.Destexhe: in “From Chemical to Biological Organization”, Ed by M. Markus, S. Müller and G. Nicolis, Springer-Verlag (1988)Google Scholar
  12. 12.
    A. Destexhe, G. Nicolis and C. Nicolis, this volume; A. Destexhe, Phys Lett A, in press, (1989)Google Scholar
  13. 13.
    L.A. Smith: Phys. Lett. A 12a, 283 (1988)Google Scholar
  14. 14.
    J.P Eckmann and D. Ruelle: Preprint (1989)Google Scholar
  15. 15.
    A. Babloyantz, and A. Destexhe: in “Temporal disorder in human oscillatory systems” Eds. L. Rensing, U. an der Heiden and M.C. Mackey, Springer Series in Synergetics 36,48 (1987a)Google Scholar
  16. 16.
    A. Destexhe, J.A. Sepulchre & A. Babloyantz, Phys. Lett. A 132, 101 (1988)CrossRefGoogle Scholar
  17. 17.
    A.Babloyantz, C.Nicolis & M.Salazar: Phys. Lett. 111A, 152 (1985)CrossRefGoogle Scholar
  18. 18.
    A. Babloyantz & A. Destexhe: in Proceedings of the first IEEE International Conference on Neural Networks, M. Caudill and C. Butler (eds), Vol ly, 31 (1987b)Google Scholar
  19. 19.
    A. Babloyantz & A. Destexhe: Proc. Natl. Acad. Sci. USA 83., 3513 (1986)CrossRefGoogle Scholar
  20. 20.
    D.S. Broomhead and G.P. King, Physica. 20D, 217 (1986)MathSciNetzbMATHGoogle Scholar
  21. 21.
    D.S. Broomhead & G.P. King: J. Phys. A: Math. Gen 24, 1563 (1987)Google Scholar
  22. 22.
    D. Gallez & A. Babloyantz, submitted to J. Neurophysiol. (1989)Google Scholar
  23. 23.
    H. Mori: Prog. Theor. Phys 63, 1044 (1980)zbMATHCrossRefGoogle Scholar
  24. 24.
    I. Dvorak & J. Siska: Phys. lett 118, 63 (1986)CrossRefGoogle Scholar
  25. 25.
    G. Mayer-Kress & S.P. Layne: in “Perspectives in Biological Dynamics and Theoretical Medicine”, proceedings, Ann N.Y. Acad. Sci 504, 64 (1987)Google Scholar
  26. 26.
    R. Cerf, Z. Farssi, B. Burgun, J.M. Trio & D. Kurtz: C. R. Acad. Sci. Paris 341, 715 (1988)Google Scholar
  27. 27.
    S.P. Layne, G. Mayer-Kress & J. Holzfuss: in “Dimensions and Entropies in Chaotic Systems” Ed G.Mayer-Kress (Springer Berlin 1986 )Google Scholar
  28. 28.
    P.E. Rapp, T.R. Bashore, J.M. Martinerie, A.M. Albano & A. I. Mees: Preprint (1989)Google Scholar
  29. 29.
    G. Mayer-Kress & J. Holzfuss: in “Temporal disorder in human oscillatory systems” Eds. L. Rensing, U. an der Heiden and M.C. Mackey, Springer Series in Synergetics. 15, 57 (1987)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Babloyantz
    • 1
  1. 1.Service de Chimie PhysiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations