Universal Properties of the Resonance Curve of Complex Systems

  • Kenneth Chang
  • Alfred Hübler
  • Norman Packard
Part of the NATO ASI Series book series (NSSB, volume 208)


The dynamics of a large variety of complex systems are confined to a low-dimensional manifold. We show that the resonance curve of those systems has a universal shape. The parameters of the resonance curve can be used to characterize a complex system.


Reaction Power Chaotic Dynamic Nonlinear Oscillator Resonance Curve Physical Interest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.A. Huberman and J.P. Crutchfield, Phys. Rev. Lett. 43:1743(1979) CrossRefGoogle Scholar
  2. D.D. Humieres, M.R.Beasley, B.A. Huberman, and A. Libchaber, Phys.Rev.A 26: 3483 (1982)Google Scholar
  3. 2.
    T. Eisenhammer, A. Hübler, T. Geisel, E. Löscher, Scaling behavior of the maximum energy exchange between coupled anharmonic oscillators, to be published; T. Eisenhammer, T. Hecht, A. Hübler, E. Löscher, Skalengesetze für den maximalen Energieaustausch nichtlinearer gekoppelter Systeme, Naturwissenschaften 74: 336 (1987)Google Scholar
  4. 3.
    T.F. Hueter and R.H. Bolt, “Sonics”, John Wiley & Sons, New York 1966, 5th ed., p. 20Google Scholar
  5. 4.
    G. Reiser, A. Hübler, and E. Löscher, Algorithm for the Determination of the Resonances of Anharmonic Damped Oscillators, Z.Naturforsch 42a: 803 (1987)Google Scholar
  6. 5.
    A. Hübler and E. Löscher, Resonant Stimulation and Control of Nonlinear Oscillators, Naturwissenschaften 76: 67 (1989)CrossRefGoogle Scholar
  7. 6.
    E.A. Jackson and A. Hübler, Periodic Entrainment of Chaotic Logistic Map Dynamics, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Kenneth Chang
    • 1
  • Alfred Hübler
    • 1
  • Norman Packard
    • 1
  1. 1.Department of Physics Beckman InstituteCenter for Complex Systems ResearchUrbanaUSA

Personalised recommendations