Seeking Dynamically Connected Chaotic Variables

  • K. Hartt
  • L. M. Kahn
Part of the NATO ASI Series book series (NSSB, volume 208)


It is of interest to determine whether two scalar time series can belong to the same chaotic dynamical system. In geophysical and biological systems, where the observables relevant to modeling may need to be uncovered, and also in extended physical systems such as turbulent ones, the question of dynamical connectedness is important. Different parts of an extended turbulent system can possess different values of the correlation dimension D2 [1], and one easily finds different systems with nearly equal D2. Therefore, equality of D2 is neither a necessary nor sufficient condition for dynamical connectedness. Also, the cross-correlation function can be misleading. In Fig. 1 we give the plots of the cross-correlation functions for (x1,x2) of the Roessler and (x1,x3) of the Lorenz attractors [2]. The Lorenz case shows a cross-correlation amplitude of only a few percent. Surprisingly, the amplitude is slightly increased when a multiplicative noise signal of up to 0.1 is injected. The Roessler case, with little correlation at nearly equal times, is more typical of strongly correlated systems. Clearly, a small cross-correlation function is an indecisive test of whether two different observables are dynamically connected. Consequently, for example, the interpretation of the disappearance of the cross-correlation function at two different points in a Rayleigh-Bénard cell at the onset of soft turbulence [3] is ambiguous.


Chaotic System Correlation Dimension Time Shift Strange Attractor Chaotic Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Kozlov, M. I. Rabinovich, M. P. Ramazanov, A. M. Reiman and M. M. Sushchik, Correlation dimension of the flow and spatial development of dynamical chaos in a boundary layer, Phys. Lett. A 128: 479 (1988).CrossRefGoogle Scholar
  2. 2.
    O. E. Roessler, An equation for continuous chaos, Phys. Lett. A 57: 397 (1976);CrossRefGoogle Scholar
  3. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 19: 130 (1963).CrossRefGoogle Scholar
  4. 3.
    F. Heslot, B. Castaing and A. Libchaber, Transitions to turbulence in helium gas, Phys. Rev. A 36: 5870 (1987).CrossRefGoogle Scholar
  5. 4.
    A. Fraser, Using mutual information to estimate entropy, in: “Dimensions and Entropies in Chaotic Systems,” G. Mayer-Kress, ed., Springer-Verlag, Berlin (1986);Google Scholar
  6. A. M. Fraser and H. L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33: 1134 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 5.
    J. Broggi, Evaluation of dimensions and entropies of chaotic systems, J. Opt. Soc. Am. B 5: 1020 (1988).CrossRefGoogle Scholar
  8. 6.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw, Geometry from a time series, Phys. Rev. Lett. 45: 712 (1980);CrossRefGoogle Scholar
  9. F. Takens, Detecting strange attractors in turbulence, in: “Dynamical Systems and Turbulence,” D. A. Rand and L.-S. Young, eds., Springer-Verlag, Berlin (1981).Google Scholar
  10. 7.
    P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D 9: 189 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 8.
    W. A. Brock and C. L. Sayers, Is the business cycle characterized by deterministic chaos?, J. Monetary Econ. 22: 71 (1988);CrossRefGoogle Scholar
  12. N. B. Abraham, L. A. Lugiato and L. M. Narducci, “Overview of instabilities in laser systems,” J. Opt. Soc. Am. B 2: 7 (1985);CrossRefGoogle Scholar
  13. W. M. Schaffer, Stretching and folding in lynx fur returns: evidence for a strange attractor in nature ?, Am. Nat. 124: 798 (1984);CrossRefGoogle Scholar
  14. A. Brandstäter, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer, E. Jen and P. J. Crutchfield, Low-dimensional chaos in a hydrodynamic system, Phys. Rev. Lett. 51: 1442 (1983).MathSciNetCrossRefGoogle Scholar
  15. 9.
    S. Ellner, Estimating attractor dimensions from limited data: a new method, with error estimates, Phys. Lett. A 133: 128 (1988).CrossRefGoogle Scholar
  16. 10.
    W. Liebert and H. G. Schuster, Proper choice of the time delay for the analysis of chaotic series, unpublished work; K. Pawelzik and H. G. Schuster, Generalized dimensions and entropies from a measured time series, Phys. Rev. A 35: 481 (1987).CrossRefGoogle Scholar
  17. 11.
    A. M. Albano, J. Muench, C. Schwartz, A. I. Mees and P. E. Rapp, Singular-value decomposition and the Grassberger-Procaccia algorithm, Phys. Rev. A 38: 3017 (1988).MathSciNetCrossRefGoogle Scholar
  18. 12.
    W. Liebert, K. Pawelzik and H. G. Schuster, Optimal embeddings of chaotic attractors from topological considerations, This Conference (1989).Google Scholar
  19. 13.
    K. Hartt and L. M. Kahn, Dynamically related chaotic variables, unpublished work.Google Scholar
  20. 14.
    D. S. Ornstein, Ergodic theory, randomness, and chaos, Science 243: 182 (1989).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • K. Hartt
    • 1
  • L. M. Kahn
    • 1
  1. 1.Department of PhysicsThe University of Rhode IslandKingstonUSA

Personalised recommendations