Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 208))

Abstract

Turbulence was one of the key phenomena that motivated the resurgence of interest in nonlinear dynamical systems. It was, after all, investigations into the mechanisms for turbulence that led Ruelle and Takens to invent the term “strange attractor” in 1971. The turbulence that is described by strange attractors is “turbulence in time” (Schuster, 1988) -- deterministic chaos, or temporal chaos in current terminology. In the past decade, a vocabulary for the quantitative characterization of temporal chaos has been developed, and has been used to describe and analyze an incredible variety of phenomena in practically all fields of science and engineering. The dimensions of strange attractors, and the entropies and Lyapunov exponents describing motions on them, have been used to analyze heartbeats and brain waves, chemical reactions, lasers, the economy, x-ray emissions of stars, flames, and fluid flow ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (Alphabetical)

  • H. Abarbanel, R. Brown, and J. Kadtke, “Prediction and system identification in chaotic nonlinear systems: time series with broadband spectra”, Phys. Lett. A 18, 401 (1989).

    Google Scholar 

  • N. B. Abraham, A. M. Albano, B. Das, T. Mello, M. F. H. Tarroja, N. Tufillaro, and R. S. Gioggia, “Definitions of chaos and measuring its characteristics”, in: Optical Chaos, J. Chrostowski and N. B. Abraham eds. (Proc. SPIE 667, 1986 ).

    Google Scholar 

  • N. B. Abraham, J. P. Gollub, and H. Swinney, “Testing nonlinear dynamics”, Physica. 11D, 252 (1984).

    Article  MATH  Google Scholar 

  • N. B. Abraham, A. M. Albano, B. Das, G. DeGuzman, S. Young, R. S. Gioggia, G. P. Puccioni, J. R. Tredicce, “Calculating the dimension of attractors from small data sets”, Phys. Lett. 114A, 217 (1986).

    Article  Google Scholar 

  • N. B. Abraham, et al., “Experimental measurements of transitions to pulsations and chaos in a single mode, unidirectional ring laser”, in:Instabilities and chaos in quantum optics, F.T. Arecchi and R.G. Harrison, eds. ( Springer-Verlag, Berlin, 1987 ).

    Google Scholar 

  • N. B. Abraham, F.T. Arecchi, and L.A. Lugiato, eds., Instabilities and chaos in quantum optics II ( Plenum, New York, 1988 ).

    Google Scholar 

  • A. M. Albano, J. Muench, C. Schwartz, A. I Mees, and P. E. Rapp, “Singular-value decomposition and the Grassberger-Procaccia algorithm”, Phys. Rev. A 38, 3017 (1988).

    Article  MathSciNet  Google Scholar 

  • A. M. Albano, A. I. Mees, G. C. de Guzman and P. E. Rapp, “Data requirements for reliable estimation of correlation dimensions”, in: Chaos in Biological Systems, H. Degn, A.V. Holden & L.F. Olsen, eds. ( Plenum, Oxford, 1987 ).

    Google Scholar 

  • A. M. Albano, L. Smilowitz, P. E. Rapp, G. C. de Guzman, R. R. Bashore, “Dimension calculations in a minimal embedding space”, in: Physics of Phase Space, Y. S. Kim and W. W. Zachary, eds. ( Springer, Berlin, 1988 ).

    Google Scholar 

  • V. S. Anischenko and H. Herzel, “Noise-induced chaos in a system with homoclinic points”, Z. Angew. Math. Mech. 68, 317 (1988).

    Article  MathSciNet  Google Scholar 

  • J. C. Antoranz and M. A. Rubio, “Hyperchaos in a simple model for a laser with a saturable absorber”, J. Opt. Soc. Am. B 5, 1070 (1988).

    Article  Google Scholar 

  • F. T. Arecchi, “Instabilities and chaos in single-mode homogenous line lasers”, in: Instabilities and chaos in quantum optics, F.T. Arecchi and R.G. Harrison, eds. ( Springer-Verlag, Berlin, 1987 ).

    Chapter  Google Scholar 

  • F. T. Arecchi, A. Lapucci, R. Meucci, A. Rovers & P.H. Coullet, “Experimental characterization of Shil’nikov chaos by statistics of return times”, Europhys. Lett. 6, 677 (1988).

    Article  Google Scholar 

  • F. T. Arecchi, W. Gadomski, A. Lapucci, H. Mancini, R. Meucci & J.A. Roversi, “Laser with feedback on optical implementation of competing instabilities, Shil’nikov chaos and transient fluctuation enhancement”, J. Opt. Soc. Am. B 5, 1153 (1988).

    Article  Google Scholar 

  • F. T. Arecchi, “Shil’nikov chaos: How to characterize homoclinic and heteroclinic behaviour”, This volume.

    Google Scholar 

  • F. Argoul, A. Arneodo, J. Elzgaray & G. Grasseau, “Characterizing spatio-temporal chaos in electrodeposition experiments”, This volume.

    Google Scholar 

  • F. Argoul, A. Arneodo & P. Richetti, “Experimental evidence of homoclinic chaos in the belusov-Zhabotinskii reaction”, Phys. Lett. 120A, 269 (1987).

    Article  Google Scholar 

  • F. Argoul, A. Arnéodo, G. Grasseau, Y. Gagne, E. J. Hopfinger & U. Frisch, “Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascase”, Nature 338, 51, (1989).

    Article  Google Scholar 

  • A. Arneodo, P. Coullet & C. Tresser, “Oscillators with chaotic behavior: an illustration of a theorem by Shilnikov”, J. Stat. Phys. 27, 171 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  • A. Arneodo, P. Coullet, C. Tresser, J. Stat. Phys. 27, 171 (1982)

    Article  MATH  Google Scholar 

  • A. Arneodo, P. H. Coullet, E. A. Spiegel & C. Tresser, Physica 14D, 327 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  • H. Atmanspacher, V. Demmel, G. Morfill, H. Scheingraber, W. Voges & G. Wiedenmann, “Measures of dimensions from astrophysical data”, This volume.

    Google Scholar 

  • P. Atten, J. G. Caputo, B. Malraison and Y. Gagne, “Determination de dimension d’attracteurs pour differents ecoulements”, J. Mec. theor. et appl. Numero special, 133 (1984).

    Google Scholar 

  • D. Auerbach, P. Cvitanovic, J-P. Eckmann, G. Gunarante, I. Procaccia, “Exploring chaotic motion through periodic orbits”, Phys. Rev. Lett. 58, 2387 (1987).

    Article  MathSciNet  Google Scholar 

  • D. Auerbach, B. O’Shaughnessy & I. Procaccia, “Scaling structure of strange attractors”, Phys. Rev. A 37, 2234 (1988).

    Google Scholar 

  • D. Auerbach, “Dynamical complexity of strange sets”, This volume.

    Google Scholar 

  • A. Babloyantz, “Chaotic dynamics in brain activity”, in: Dynamics of Sensory and Cognitive Processing by the Brain, E. Basar, ed., ( Springer-Verlag, Berlin, 1988 ).

    Google Scholar 

  • A. Babloyantz and A. Destexhe, “The creutzfeld-Jakob disease in the hierarchy of chaotic attractors”, in: From chemical to biological organization, M. Markus, S. Muller and G. Nicolis, eds., ( Springer-Verlag, Berlin, 1988 ).

    Google Scholar 

  • A. Babloyantz, J. M. Salazar & C. Nicolis, “Evidence of chaotic dynamics of brain activity during the sleep cycle”, Phys. Lett. 111A, 152 (1985).

    Article  Google Scholar 

  • R. Badii, “Unfolding complexity in nonlinear dynamical systems”, This volume

    Google Scholar 

  • R. Badii and G. Broggi, “Hierarchies of relations between partial dimensions and local expansion rates in strange attractors”, This volume.

    Google Scholar 

  • R. Badii, K. Heinzelmann, P. F. Meier & A. Politi, “Correlation functions and generalized Lyapunov exponents”, Phys. Rev A. 37, 1323 (1988).

    MathSciNet  Google Scholar 

  • R. Badii and G. Brocci, “Measurement of the dimension spectrum f(a): fixed mass approach”, Phys. Lett. 131A, 339 (1988).

    Article  Google Scholar 

  • R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi & M. A. Rubio, “Dimension increase in filtered chaotic signals”, Phys. Rev. Lett. 60, 979 (1988).

    Article  Google Scholar 

  • R. Badii and A. Politi, “Renyi dimensions from local expansion rates”, Phys. Rev. A 35, 1288 (1987).

    MathSciNet  Google Scholar 

  • R. Badii and A Politi, “Statistical description of chaotic attractors: the dimension function”, J. Stat. Phys. 40, 725 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  • D. Barkley and A. Cummings, “Experimental study of the multifractal structure of the quasiperiodic set”, This volume.

    Google Scholar 

  • M. F. Barnsley, Fractals Everywhere ( Academic Press, New York, 1988 )

    MATH  Google Scholar 

  • P. M. Battelino, C. Grebogi, E. Ott & J. Yorke, “Multiple coexisting attractors, basin boundaries & basic sets”, Physica D 32, 296 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  • D. Bensen, M. Welge, A. Hübler, N. Packard, “Characterization of complexity in systems by aperiodic driving forces”, This volume.

    Google Scholar 

  • D. Bensimon, B. I. Shraiman & V. Croquette, “Nonadiabatic effects in convection”, Phys. Rev. A 38, 5461 (1989).

    Google Scholar 

  • T. Bohr and M. H. Jensen, “ Order parameter, symmetry breaking & phase transitions in the description of multifractal sets”, Phys. Rev. A 36, 4904 (1987).

    MathSciNet  Google Scholar 

  • A. Brandstatter and H. Swinney, “ Strange Attractors in Weakly Turbulent Couette-Taylor Flow”, Phys. Rev. A 35, 2207 (1987).

    Google Scholar 

  • W. A. Brock and W. D. Dechert, “Statistical inference theory for measures of complexity in chaos theory and nonlinear science”, This volume.

    Google Scholar 

  • G. Broggi, “Evaluation of dimensions and entropies of chaotic systems”, J. Opt. Soc. Am. B 5, 1020 (1988).

    Article  Google Scholar 

  • D. S. Broomhead and G. P. King, “Extracting Qualitative Dynamics from Experimental Data”, Physica 20D, 217 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  • D. S. Broomhead, R. Jones & G. P. King, “Topological dimension and local coordinates from time series data”, J. Phys A 20, L563 (1987).

    MathSciNet  Google Scholar 

  • D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data”, Physica 20D, 217 (1986a).

    Article  MathSciNet  MATH  Google Scholar 

  • R. E. Byers and R. I. C. Hansell, “Stablization of prolific populations through migration and long-lived propagules”, This volume.

    Google Scholar 

  • R. E. Byers, R. I. C. Hansell & N. Madras, “Complex behavior of systems due to semi-stable attractors: attractors that have been destablized but which still temporaily dominate the dynamics of a system”, This volume.

    Google Scholar 

  • J. G. Caputo, “Practical remarks on the estimation of dimension and entropy from experimental data’, This volume.

    Google Scholar 

  • K. Chang, A. Hübler, N. Packard, “Universal properties of the resonance curve of complex systems”, This volume.

    Google Scholar 

  • A. Chhabra and R. V. Jensen, “Direct determination of f(a) singularity spectrum”, Phys. Rev. A 31, 1872 (1989).

    Google Scholar 

  • S. Ciliberto and P. Bigazzi, “Spatiotemporal intermittency in Rayleigh-Bernard convection”, Phys. Rev. Lett. 60, 286 (1988).

    Article  Google Scholar 

  • S. Ciliberto and J. P. Gollub, “Pattern competition leads to chaos”, Phys. Rev. Lett. 52, 922 (1984).

    Article  Google Scholar 

  • S. Ciliberto, “Characterizing space-time chaos in an experiment of thermal convection.”, This volume

    Google Scholar 

  • P. Coullet, L. Gil & F. Rocca, “Optical vortices”, Opt. Commun., in press

    Google Scholar 

  • P. Coullet, L. Gil & J. Lega, “Defect-mediated trubulence”, Phys. Rev. Lett. 62, 1619 (1989).

    Article  Google Scholar 

  • P. Coullet and J. Lega, “Defect-mediated turbulence in wave patterns”, Europhys. Lett. 7, 511 (1988).

    Article  Google Scholar 

  • P. Coullet, “Defect-induced spatio-temporal chaos”, This volume.

    Google Scholar 

  • J. P. Crutchfield, “Inferring the dynamic, quantifying physical complexity”, This volume.

    Google Scholar 

  • J. P. Crutchfield, J. D. Farmer, N. H. Packard & R. Shaw, “Chaos”, Sci. Am. 255, 46 (1986).

    Article  Google Scholar 

  • J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data series”, Complex Systems 1, 417 (1987).

    MathSciNet  MATH  Google Scholar 

  • J. P. Crutchfield and K. Young, “Inferring statistical complexity”, Phys. Rev. Lett. 63, 10 (1989).

    Article  MathSciNet  Google Scholar 

  • P. Cvitanovic, Universality in Chaos, ( Adam Hilger, Bristol, 1986 ).

    Google Scholar 

  • D. Dangoisse, A. Bekkali, F. Papoff & P. Glorieux, “Shilnikov dynamics in a passive Q-switching laser”, Europhys. Lett. 6, 335 (1988).

    Article  Google Scholar 

  • A. Destexhe, G. Nicolis & C. Nicolis, “Symbolic dynamics from chaotic time series”, This volume.

    Google Scholar 

  • A. Desteche, J. A. Sepulchre & A. Babloyantz, “A comparative study of experimental quantification of deterministic chaos”, Phys. Lett. 132A, 101 (1988).

    Article  Google Scholar 

  • M. Ding, C. Grebogi & E. Ott, “Dimensions of strange nonchaotic attractors”, .Phys. Lett. 137A, 167 (1989).

    Article  MathSciNet  Google Scholar 

  • M. Dorf le, “Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map”, .J. Stat. Phys. 40, 93 (1985).

    Article  MathSciNet  Google Scholar 

  • B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot & S. W. Zucker, Evaluating the fractal dimension of profiles“, Phys. Rev. A 39, 1500 (1989).

    MathSciNet  Google Scholar 

  • J. P. Eckmann, S. Oliffson Kamphorst & D. Ruelle, “Recurrence plots of dynamical systems”, Europhysics Lett. 4, 973 (1987).

    Article  Google Scholar 

  • J-P. Eckmann, S. O. Kamphorst, D. Ruelle & S. Ciliberto, “Lyapunov exponents from a time series”, Phys. Rev. A 34, 4971 (1986).

    MathSciNet  Google Scholar 

  • J-P. Eckmann and D. Ruelle, “Erogdic theory of chaos and strange attractors”, Rev. Mod. Phys. 57, 617 (1985).

    Article  MathSciNet  Google Scholar 

  • S. Ellner, “Estimating attractor dimensions from limited data: a new method with error estimates”, Phys. Lett. 133A, 128 (1988).

    Article  Google Scholar 

  • R. M. Everson, “Lyapunov exponents, dimension and entropy in coupled lattice maps”, This volume.

    Google Scholar 

  • G. Fahner and P. Grassberger, “Entropy estimates for dynamical systems”, Complex Systems 1, 1093 (1987).

    MathSciNet  MATH  Google Scholar 

  • J. Fang, “Evolution of the irreversible beam dynamical variable and applications”, This volume.

    Google Scholar 

  • J. Fang, “The effects of external noise on complexity in two dimensional driven damped dynamical system”, This volume.

    Google Scholar 

  • J. D. Farmer and J. J. Sidorovich, “Predicting chaotic time series”, Phys. Rev. Lett. 59, 845 (1987).

    Article  MathSciNet  Google Scholar 

  • J. D. Farmer and J. J. Sidorovich, “Exploiting chaos to predict the future and reduce noise”, in: Evolution, Learning and Cognition ( World Scientific, Singapore, 1988 ).

    Google Scholar 

  • J. D. Farmer, E. Ott & J. A. Yorke, “The dimension of chaotic attractors”, Physica 7D, 153 (1983).

    Article  MathSciNet  Google Scholar 

  • M. Frame, “Chaotic behavior of the forced Hodgkin-Huxley axon”, This volume.

    Google Scholar 

  • G. W. Frank, T. Lookman, M. A. H. Nerenberg, “Chaotic time series analysis using short and noisy data sets: application to a clinical epilepsy seizure”, This volume.

    Google Scholar 

  • A. M. Fraser, “Measuring complexity in terms of mutual information”, This volume.

    Google Scholar 

  • A. M. Fraser and H. L Swinney, “Independent Coordinates for Strange Attractors from Mutual Information”, Phys. Rev. A 33, 1134 (1986).

    MathSciNet  Google Scholar 

  • W. J. Freeman, “Simulation of chaotic EEG patterns with a dynamic model of the olfactory system”, Biol. Cybern. 56, 139 (1987).

    Article  Google Scholar 

  • K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic dimensionality of data”, IEEE Trans. Comput. C-20, 176 (1971).

    Article  Google Scholar 

  • S. T. Gaito and G. P. King, “Chaos on a catastrophe manifold”, This volume.

    Google Scholar 

  • J. M. Gambaude, P. Glendinning & C. Tresser, “The gluing bifurcation: I. Symbolic dynamics of closed curves”, Nonlinearity 1, 203 (1988).

    Article  MathSciNet  Google Scholar 

  • P. Gaspard, R. Kapral & G. Nicolis, J. Stat. Phys. 35, 697 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  • D. J. Gauthier, M. S. Malcuit & R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor”, Phys. Rev. Lett. 61, 1827 (1988).

    Article  Google Scholar 

  • R. Gilmore, G. Mindlin, H. G. Solari, “Topological frequencies in dynamical systems”, This volume.

    Google Scholar 

  • J. A. Glazier, G. Gunaratne & A. Libchaber, “f(a) curves: experimental results”, Phys. Rev. A 37, 523 (1988).

    Google Scholar 

  • J. Gleick, Chaos, Making a New Science (Viking, New York, 1987 ).

    Google Scholar 

  • P. Glendinning and C. Sparro, J. Stat. Phys. 35, 645 (1984)

    Article  MATH  Google Scholar 

  • P. Glendinning, “Time series near codimension two global bifurcations”, This volume.

    Google Scholar 

  • J. N. Glover, “Estimating lyapunov exponents from approximate return maps”, This volume.

    Google Scholar 

  • A. Goel, S. S. Rao & A. Passamante, “Estimating local intrinsic dimensionality using thresholding techniques”, This volume.

    Google Scholar 

  • J. P. Gollub, “Characterizing dynamical complexity in interfacial waves”, This volume.

    Google Scholar 

  • J. P. Gollub and C. W. Meyer, “Symmetry-breaking instabilities on a fluid surface”, Physica 6D, 337 (1983).

    Article  Google Scholar 

  • P. Grassberger, “Finite sample corrections to entropy and dimension estimates”, Phys. Lett. 128A, 369 (1988).

    Article  MathSciNet  Google Scholar 

  • P. Grassberger, R. Badii & A. Politi, “Scaling laws for invariant measures on hyperbolic and non-hyperbolic attractors”, J. Stat. Phys. 51, 135 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  • P. Grassberger, “Are 323, 609 (1987). there really climatic attractors?”, Nature

    Google Scholar 

  • P. Grassberger and I. Procaccia, “Characterization of Strange. Rev. Lett. 50, 346 (1983).

    Article  MathSciNet  Google Scholar 

  • P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov Entropy from a Chaotic Signal”, Phys. Rev. A 28, 2591 (1983a).

    Article  Google Scholar 

  • P. Grassberger and I. Procaccia, “Measuring the Strangeness of Strange Attractors”, Physica 9D, 189 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  • C. Grebogi, E. Ott & J. A. Yorke, “Unstable periodic orbits and the dimensions of multifractal chaotic attractors”, Phys. Rev. A 37, 1711 (1988).

    MathSciNet  Google Scholar 

  • C. Grebogi, E. Ott & J. A. Yorke, “Unstable periodic orbits and the dimension of chaotic attractors”, Phys. Rev. A 36, 3522 (1987).

    MathSciNet  Google Scholar 

  • J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems & Bifurcation of Vector Fields” in: Applied Mathematical Sciences 42 ( Springer-Verlag, New York, 1983 ).

    Google Scholar 

  • G. H. Gunaratne, M. H. Jensen & I. Procaccia, “Universal strange attractors on wrinkled tori”, Nonlinearity 1, 157 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  • H. Haken, Information and self-organization: a marcroscopic approach to complex systems, Springer Series in Synergetics 40 ( Springer-Verlag, Berlin, 1988 ).

    Google Scholar 

  • T. C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia & B.I. Shraiman, “Fractal Measures and their Singularities: The characterization of strange sets”, Phys. Rev. A 33, 1141 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  • Hao Bai-lin, “Bifurcation and chaos in the periodically forced Brusselator” (Collected Papers Dedicated to Professor Kazuhisa Tomita, Kyoto University, 1987 ).

    Google Scholar 

  • Hao Bai-Lin, Chaos, ( World Scientific, Singapore, 1984 ).

    MATH  Google Scholar 

  • K. Hartt and L. M. Kahn, “Seeking dynamically connected chaotic variables.” This volume.

    Google Scholar 

  • J. W. Haystad and C. L. Ehlers, “Attractor dimension of nonstationary dynamical systems from small data sets”, Phys. Rev. A 39, 845 (1989).

    Google Scholar 

  • D. Hennequin, M. Lefranc, A. Bekkali, D. Dangoisse & P. Glorieux, “Characterization of Shilnikov chaos in a CO2 laser containing a saturable absorber”, This volume.

    Google Scholar 

  • D. Hennequin, F. de Tomasi, L. Fronzoni, B. Zambon & E. Arimondo, “Shil.nikov chaos and noise in a laser with saturable absorber”, Opt. Commun., in press (1989).

    Google Scholar 

  • M. Henon, “A two-dimensional mapping with a strange attractor”, Comm. Math. Phys. 50, 69 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • H. G. E. Hentschel and I. Procaccia, “The infinite number of generalized dimensions of fractals and strange attractors”, Physica 8D, 435 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  • H.-P. Herzel and B. Pompe, “Effects of noise on a nonuniform chaotic map”, Phys. Lett. 122A, 121 (1987).

    Article  MathSciNet  Google Scholar 

  • H. Herzel, “Stabilization of chaotic orbits by random noise”, Z. Angew. Math. Mech. 68, 582 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  • F. Heslot, B. Castaing, A. Libchaber, “ Transition to turbulence in helium gas”, Phys. Rev. A 36, 5870 (1987).

    Google Scholar 

  • A. V. Holden, ed., Chaos, (Princeton University Press, Princeton, 1986 ).

    Google Scholar 

  • G-H. Hsu, E. Ott, C. Grebogi, “Strange saddles and the dimensions of their invariant manifolds”, .Phys. Lett. 127A, 199 (1988).

    Article  MathSciNet  Google Scholar 

  • U. Hübner, W. Klische, N. B. Abraham & C. O. Weiss, “On problems encountered with dimension calculations”, This volume.

    Google Scholar 

  • U. Hübner, N.B. Abraham and C.O. Weiss, “Dimensions and Entropies of Chaotic Intensity Pulsations in a Single-Mode FIR NH3 Laser”, Physical Review A, to be published 1989

    Google Scholar 

  • F. Hunt, “Error analysis and convergence of capacity dimension algorithms”, preprint.

    Google Scholar 

  • A. Hurd, “Resource letter FR-1: Fractals”, Am. J. Phys. 56, 969 (1988).

    Article  MathSciNet  Google Scholar 

  • K. Ikeda and K. Matsumoto, “Study of a high-dimensional chaotic attractor”, >J. Stat. Phys. 44, 955 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  • K. Ikeda and K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback”, .Physica. 29D, 223 (1987).

    Article  MATH  Google Scholar 

  • M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia and J. Stavans, “Global universality at the onset of chaos: Results on a forced Rayleigh-Benard experiment”, Phys. Rev. Lett. 55, 22798 (1987).

    Google Scholar 

  • J. L. Kaplan and J. A. Yorke, “Functional differential equations and approximations of fixed points”, in Lecture Notes in Mathematics, 13, H.O. Peitgen and H.O. Walther, eds. ( Springer, Berlin, 1979 ).

    Google Scholar 

  • F. Kasper and H. G. Schuster, “Easily calculable measure for the complexity of spatiotemporal patterns”, Phys. Rev. A. 36, 842 (1987).

    Google Scholar 

  • S. Kim, S. Ostlund, G. Yu, “Fourier analysis of multi-frequency dynamical systems”, .Physica. 31D, 117 (1989).

    MathSciNet  Google Scholar 

  • P. Kolodner, D. Bensimon & C. M. Surko, “Traveling-wave convection in an annulus”, Phys. Rev. Lett. 60, 1723 (1988).

    Article  Google Scholar 

  • E. Kostelich and J. A. Yorke, “Noise reduction in dynamical systems”, Phys. Rev. A 38, 1649 (1988).

    MathSciNet  Google Scholar 

  • W. Lange and M. Moller, “Systematic errors in estimating dimensions from experimental data”, This volume.

    Google Scholar 

  • D. P. Lathrop and E. J. Kostelich, “Analyzing periodic saddles in experimental strange attractors”, This volume.

    Google Scholar 

  • M. Le Berre, E. Ressayre & A. Tallet, “Phase transitions induced by deterministic delayed forces”, This volume.

    Google Scholar 

  • C.-K. Lee and F. C. Moon, “An optical technique for measuring fractal dimensions of planar Poincare maps”, .Phys. Lett. 114A, 222 (1986).

    Article  MathSciNet  Google Scholar 

  • W. Li, “Mutual information functions versus correlation functions in binary sequences”, This volume.

    Google Scholar 

  • B. Mandelbrot, The Fractal Geometry of Nature, ( Freeman, San Francisco, 1982 )

    MATH  Google Scholar 

  • J. M. Martinerie, A. M. Albano, A. I. Mees, P. E. Rapp, “Mutual information, strange attrators and optimal estimation of dimension”, preprint, submitted to Phys. Rev A.

    Google Scholar 

  • G. Mayer-Kress and A. Hübler, “Time evolution of local complexity measures and aperiodic perturbations of nonlinear dynamical systems”, This volume.

    Google Scholar 

  • G. Mayer-Kress, ed., Dimensions and Entropies in Chaotic Systems - - Quantification of Complex Behavior, Springer Series in Synergetics 32 ( Springer-Verlag, Berlin, 1986 ).

    Google Scholar 

  • A. Mees, “Modeling dynamical systems from real-world data”, This volume.

    Google Scholar 

  • A. I. Mees, P.E. Rapp & L.S. Jennings, “Singular-value decomposition and embedding dimension”, Phys. Rev. A 37, 4518 (1988).

    Article  Google Scholar 

  • T. Meyer, A. Hübler, N. Packard, “Reduction of complexity by optimal driving forces”, This volume.

    Google Scholar 

  • F. Mitschke, M. Moller & W. Lange, “Measuring filtered chaotic signals”, Phys. Rev. A. 37, 4518 (1988).

    Google Scholar 

  • M. Möller, W. Lange, F. Mitschke, N.B. Abraham & U. Hübner, “Errors from Digitizing and Noise in Estimating Attractor Dimensions”, Phys. Lett. A 138, 176–182 (1989)

    Google Scholar 

  • T. C. Molteno and N. B. Tufillaro, “Torus doubling and chaotic string vibrations: experimental results”, J. Sound Vib., in press.

    Google Scholar 

  • G. J. Mpitsos, H. C. Creech & S. O. Soinilla, “Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns”, Brain Res. Bull. 21, 529 (1988).

    Article  Google Scholar 

  • G. J. Mpitsos, H. C. Creech, C. S. Cohan & M. Mendelson, “Variability and chaos: Neurointegrative principles in self-organization of motor patterns”, in: Dynamic Patterns in Complex Systems, J.A.S. Kelso, et al., eds. ( World Scientific, Singapore, 1988 ).

    Google Scholar 

  • A. C. Newell, D. A. Rand & D. Russell, “Turbulent dissipation rates and the random occurrence of coherent events”, .Phys. Lett. 132A, 112 (1988).

    Article  MathSciNet  Google Scholar 

  • B. Nicolaneko and Zhen-Su She, “Symmetry breaking homoclinic chaos”, This volume.

    Google Scholar 

  • G.-L. Oppo, M. A. Pernigo, L. M. Narducci & L. A. Lugiato, “Characterization of spatiotemporal structures in lasers: a progress report”, This volume.

    Google Scholar 

  • E. Ott, C. Grebogi & J. A. Yorke, “Theory of first order phase transitions for chaotic attractors of nonlinear systems”, .Phys. Lett. 135A, 342 (1989).

    MathSciNet  Google Scholar 

  • E. Ott, “Strange attractors and chaotic motion of dynamical systems”, .Rev. Mod. Phys. 53, 655 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  • N. H. Packard, J. P. Crutchfield, J. D. Farmer & R. S. Shaw, “Geometry from a time series”, Phys. Rev. Lett. 45, 712 (1980).

    Article  Google Scholar 

  • F. Papoff, A. Fioretti & E. Arimondo & N. B. Abraham, “Time return maps and distributions for laser with saturable absorber”, This volume.

    Google Scholar 

  • T. S. Parker and L. O. Chua, “Chaos: A tutorial for engineers”, .Proc. IEEE. 75, 982 (1987).

    Article  Google Scholar 

  • A. Passamante, T. Hediger & M. E. Farrell, “Analysis of local space/time statistics and dimensions of attractors using singular value decompostion and information theoretic criteria”, This volume.

    Google Scholar 

  • A. Passamante, T. Hediger & M. Gollub, “Fractal dimension and local intrinsic dimension”, Phys. Rev. A 39, 3640 (1989).

    MathSciNet  Google Scholar 

  • K. Pawelzik and H. G. Schuster, “Generalized dimensions and entropies from a measured time series”, Phys. Rev. A 35, 481 (1987);

    Google Scholar 

  • K. Pawelzik and H. G. Schuster, “Generalized dimensions and entropies from a measured time series”,Errata, Phys. Rev. A 36, 4529 (1987).

    Google Scholar 

  • H. O. Peitgen and D. Saupe, eds., The Science of Fractal Images, ( Sprigner Verlag, New York, 1988 )

    Google Scholar 

  • H. O. Peitgen and P. H. Richter, The beauty of fractals“ ( Springer-Verlag, Berlin, 1986 )

    Book  Google Scholar 

  • C. Pérez-Garcia, E. Pampaloni and S. Ciliberto, “Amplitude equations for hexagonal patterns of convection in non-Boussinesq fluids”, This volume.

    Google Scholar 

  • A. Politi, G. D’Alessandro, A. Torcini, “Fractal dimensions in coupled map lattices”, This volume.

    Google Scholar 

  • I. Procaccia, “Weak turbulence and the dynamics of topological defects”, This volume.

    Google Scholar 

  • J. B. Ramsey and H-J. Yuan, “Bias and error bars in dimension calculations and their evaluation in some simple models”, .Phys. Lett. 134A, 287 (1989).

    Article  Google Scholar 

  • P. E. Rapp, I. D. Zimmerman, A. M. Albano, G. C. de Guzman & N. N. Greenbaun, “Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons”, .Phys. Lett. 110A, 335 (1985).

    Article  Google Scholar 

  • P. E. Rapp, I. D. Zimmerman, T. R. Bashore, A.M. Albano, G.C. de Guzman & N. N. Bashore, “Experimental studies of chaotic neural behavior: cellular activity and electroencephalographic signals”, in: Nonlinear oscillations in biology and chemistry. H. G. Othmer, ed. ( Springer-Verlag, Berlin, 1985 ).

    Google Scholar 

  • P. E. Rapp, A. M. Albano & A. I. Mees, “Calculation of correlation dimensions from experimental data: Progress and problems”, in: Dynamic Patterns in Complex Systems. J. A. S. Kelso, et al, eds. ( World Scientific, Singapore, 1988 ).

    Google Scholar 

  • M. G. Raymer, “Entropy and correlation time in a multimode dye laser”, This volume.

    Google Scholar 

  • A. Renyi, Probability Theory, ( North-Holland, Amsterdam, 1970 ).

    Google Scholar 

  • P. Richetti, J. C. Roux, F. Argoul & A. Arneodo, “From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction. II Modeling and theory”, J. Chem. Phys. 86, 3339 (1987)

    Article  MathSciNet  Google Scholar 

  • J. Ringland and M. Schell, “Pattern cardinality as a characterization of dynamical complexity”, This volume.

    Google Scholar 

  • J. Ringland and M. Schell, “The Farey tree embodied in bimodal maps of the interval”, Phys. Lett. 136A, 379 (1989).

    Article  MathSciNet  Google Scholar 

  • O. E. Rössler, Phys. Lett. 71A, 155 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  • M. A. Rubio, A. D. Dougherty & J. P. Gollub, “Characterization of irregular interfaces: Roughness and self-affine fractals. This volume.

    Google Scholar 

  • D. Ruelle and F. Takens, “On the nature of turbulence”, Commun, Math. Phys. 20, 167 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  • Y. A. Rzhanov and Y. D. Kalafati, “Spatial structure multistability in an array of optically bistable elements”, Opt. Commun. 70, 161 (1989).

    Article  Google Scholar 

  • S. Sato, M. Sano & Y. Sawada.,“Practical methods of measuring the generalized dimension and the largest lyapunov exponent,in high dimensional chaotic systems”, Prog. Theor. Phys. 77, 1 (1987)

    Article  MathSciNet  Google Scholar 

  • C. L. Sayers, “Dimension calculation precison with finite data sets”, This volume.

    Google Scholar 

  • W. M. Schaffer and L. F. Olsen, “Chaos in childhood epidemics”, This volume.

    Google Scholar 

  • M. Schell, S. Fraser & R. Kapral, “Diffusive dynamics in systems with translational symmetry: a one-dimensional-map model”, Phys. Rev. A 26, 504 (1982).

    Article  MathSciNet  Google Scholar 

  • H. G. Schuster, Deterministic Chaos, ( VCH Verlagsgesselschaft, Weinheim, 1988 ).

    Google Scholar 

  • H. G. Schuster, “Extraction of models from complex data”, This volume.

    Google Scholar 

  • M. A. Sepulveda and R. Badii, “Symbolic dynamical resolution of power spectra”, This volume.

    Google Scholar 

  • R.. Shaw, “Strange attractors, chaotic behavior & information flow”, Z. Naturforsch. 36A, 80 (1981)

    MathSciNet  MATH  Google Scholar 

  • L. P. Shil’nikov, Dokl. Akad. Nauk SSSR 160, 558 (1965).

    Google Scholar 

  • L. P. Shil’nikov, Mat. Sbornik. 77, 119 (1968).

    Google Scholar 

  • L. P. Shil’nikov, Mat. Sbornik 461 (1968).

    Google Scholar 

  • L. P. Shil’nikov, Mat. Sbornik 81, (123), 92 (1970).

    Google Scholar 

  • L. P. Shil’nikov, (Eng. Trans.: Sov. Math. Doklady 3, 394 (1962).).

    MATH  Google Scholar 

  • L. P. Shil’nikov, (Eng. Trans.: Sov. Math. Doklady 6, 163 (1965).

    Google Scholar 

  • L. P. Shil’nikov, (Eng. Trans.: Sov. Math. Doklady 8, 54 (1967).

    MATH  Google Scholar 

  • L. P. Shil’nikov, Math USSR Sbornik 6, 427 (1968).

    Article  Google Scholar 

  • L. P. Shil’nikov, Math USSR Sbornik 10, 91 (1970).

    Article  MATH  Google Scholar 

  • F. Simonelli and J. P. Gollub, “Surface wave mode interactions: effects of symmetry and degeneracy”, J. Fluid Mech. 199, 471 (1989).

    Article  MathSciNet  Google Scholar 

  • C. A. Skarda and W. J. Freeman, “How brains make chaos in order to make sense of the world”, Behavioral and Brain Sciences 10, 161 (1987).

    Article  Google Scholar 

  • L. A. Smith, “Quantifying chaos with predictive flows and maps: locating unstable periodic orbits”, This volume.

    Google Scholar 

  • L. A. Smith, “Intrinsic limits on dimension calculations”. Phys. Lett. 133A, 283 (1988).

    Article  Google Scholar 

  • H. G. Solari and R. Gilmore, “Relative rotation rates from driven dynamical systems”, This volume.

    Google Scholar 

  • H. G. Solari, Xin-Jun Hou & R. Gilmore, “Stretching, folding and twisting in driven damped Duffing device”, This volume.

    Google Scholar 

  • R. Stoop and P. F. Meier, “Evaluation of Lyapunov exponents and scaling functions from time series”, J. Opt. Soc. Am. B 5, 1037 (1988).

    Article  Google Scholar 

  • Z. Su, R. W. Rollins & E. R. Hunt, “Measurement of f(Œ) for multifractal attractors in driven diode resonator systems”, This volume.

    Google Scholar 

  • Z. Su, R. W. Rollins and E. R. Hunt, “Measurement of f(a) spectra of attractors at transitions to chaos in driven diode resonator systems”, Phys. Rev. A 36, 3515 (1987).

    Article  Google Scholar 

  • F. Takens, “Invariants related to dimensions and entropy”, in: Atas do 13 Cologkio Brasiliero do Matematica (Rio de Janerio, 1983 ).

    Google Scholar 

  • F. Takens, “On the numerical determination of the dimension of an attractor”, in: Dynamical Systems and Bifurcations, Groningen, 1984. Lecture Notes in Mathematics 1125 ( Springer-Verlag, Berlin, 1985 ).

    Google Scholar 

  • F. Takens, “Detecting strange attractors in turbulence”, in: Dynamical Systems and Turbulence, Warwick, 1980. Lecture Notes in Mathematics 898, ( Springer-Verlag, Berlin, 1981 )

    Google Scholar 

  • W. Y. Tam, J. A. Vastano, H. L. Swinney, W. Horsthemke, “Regular and chaotic chemical spatiotemporal patterns”, Phys. Rev. Lett. 61, 2163 (1988).

    Article  Google Scholar 

  • C. Tatum, “The field patterns of a hybrid mode laser: detecting the ”hidden“ bistability of the optical phase pattern”, This volume.

    Google Scholar 

  • Y. Termonia and Z. Alexandrowicz, “Fractal dimensions of strange attractors from radius versus size of arbitrary clusters”, Phys. Rev. Lett. 51, 1265 (1983).

    Article  MathSciNet  Google Scholar 

  • J. Theiler, “Statistical error in dimension estimators”, This volume.

    Google Scholar 

  • J. Theiler, “Lacunarity in a best estimator of fractal dimension”, Phys. Lett. 133A, 195 (1988).

    Article  MathSciNet  Google Scholar 

  • J. R. Tredicce, E. J. Quel, A. M. Ghazzawi, C. Green, M. A. Pernigo, L. M. Narducci & L. A. Lugiato, “Spatial and temporal instabilities in a CO2 laser”, Phys. Rev. Lett. 62, 1274 (1989).

    Article  Google Scholar 

  • C. Tresser, Ann. Inst. Henri Poincaré 40, 441 (1984).

    MATH  Google Scholar 

  • C. Tresser, J. Physique 45, 837 (1984)

    Article  MathSciNet  Google Scholar 

  • N. B. Tufillaro, R. Ramshankar & J. P. Gollub, “Order-disorder transition in capillary ripples”, Phys. Rev. Lett. 62, 422 (1989).

    Article  Google Scholar 

  • N. B. Tufillaro, “Nonlinear and chaotic string vibrations”, Am. J. Phys. 57, 408 (1989).

    Article  Google Scholar 

  • D. K. Umberger, C. Grebogi, E. Ott & D. Afeyan, “Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators”, Phys. Rev. A. 39, 4835 (1989).

    MathSciNet  Google Scholar 

  • W. Water and P. Schram, “Generalized dimensions from near-neighbor information”, Phys. Rev. Lett. 47, 1400 (1988).

    Google Scholar 

  • C. O. Weiss and N. B. Abraham, “Characterizing chaotic attractors underlying single mode laser emission by quantitative laser field phase measurement”, This volume.

    Google Scholar 

  • C. O. Weiss, N. B. Abraham and U. Hübner, “Homoclinic and Heteroclinic Chaos in a Single-Mode Laser”, Phys. Rev. Lett. 61, 1587–1590 (1988).

    Article  Google Scholar 

  • H. G. Winful and S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays”, Appl. Phys. Lett. 53, 1894 (1988).

    Article  Google Scholar 

  • A. Wolf, J.B. Swift, H.L. Swinney & J.A. Vastano, “Determining Lyapunov exponents from a time series”, Physica 16D, 285 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  • S. Adachi, M. Toda & K. Ikeda, “Potential for mixing in quantum chaos”, Phys. Rev. Lett. 61, 655 (1988).

    Article  Google Scholar 

  • S. Adachi, M. Toda & K. Ikeda, “Quantum-classical correspondence in many-dimensional quantum chaos”, Phys. Rev. Lett. 61, 659 (1988).

    Article  Google Scholar 

  • P. M. Battelino, C. Grebogi, E. Ott and J. A. Yorke, “Chaotic Attractors on a 3-Torus & Torus Break-up”, Physica D 39, 299 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  • P. Cvitanovic, “Invariant measurement of strange sets in terms of cycles”, Phys. Rev. Lett. 61, 2729 (1988).

    Article  MathSciNet  Google Scholar 

  • P. Cvitanovic, G.H. Gunaratne & I. Procaccia, “Topological and metric properties of Hénon-type strange attractors”, Phys. Rev. A 38, 1503 (1988).

    Article  MathSciNet  Google Scholar 

  • W. L. Ditto, S. Rauseo, R. Cawley, C. Grebogi, G.-H. Hsu, E. Kostelich, E. Ott, H.T. Savage, R. Segnan, M.L. Spano & J.A. Yorke, “Experimental observation of crisis-induced intermittency and its critical exponent”, Phys. Rev. Lett. 63, 923 (1989).

    Article  Google Scholar 

  • A. M. Fraser, “Reconstructing attractors from scalar time series: a comparison of singular system and redundancy criteria”, Physica 34D, 391 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  • G. H. Gunaratne and I. Procaccia, “Organization of Chaos”, Phys. Rev. Lett. 59, 1377 (1987).

    Article  MathSciNet  Google Scholar 

  • G. H. Gunaratne, P. S. Linsay & M. J. Vinson, “Chaos beyond onset: a comparison of theory and experiment”, Phys. Rev. Lett. 63, 1 (1989).

    Article  MathSciNet  Google Scholar 

  • K. Ikeda, S. Adachi & M. Toda, “Absorption of light by quantum chaos system: can quantum chaos be an origin of dissipation?”, Kyoto preprint.

    Google Scholar 

  • K. Ikeda & K. Matsumoto, “Information theoretical characterization of turbulence”, Phys. Rev. Lett 62, 2265 (1989).

    Article  Google Scholar 

  • K. Ikeda, K. Otsuka & K. Matsumoto, “Maxwell-Bloch turbulence”, to appear in Suppl. Prog. Theor. Phys. (1989).

    Google Scholar 

  • E. J. Kostelich and H. L. Swinney, “Practical considerations in estimating dimension from time series data”, Physica Scripta 40, 436 (1989).

    Article  Google Scholar 

  • D. P. Lathrop and E. J. Kostelich, “Characterization of an experimental strange attractor by periodic orbits”, Phys. Rev. A 40, 4028 (1989).

    MathSciNet  Google Scholar 

  • S. D. Meyers, J. Sommeria and H. L. Swinney, “Laboratory study of the dynamics of jovian-type vortices”, Physica 37D, 515 (1989).

    Article  Google Scholar 

  • M. Mizuno and K. Ikeda, “An unstable mode selection rule: frustrated optical instability due to competing boundary conditions”, Physica 36D, 327 (1989).

    Article  MathSciNet  Google Scholar 

  • L. M. Narducci, E. J. Quel & J. R. Tredicce, eds., Lasers and Quantum Optics ( World Scientific, Singapore, 1990 ).

    Google Scholar 

  • K. Otsuka and K. Ikeda, “Cooperative dynamics and functions in a collective nonlinear optical element system”, Phys. Rev. A 39, 5209 (1989).

    Article  Google Scholar 

  • B.-S. Park, C. Grebogi, E. Ott & J. A. Yorke, “Scaling of fractal basin boundaries near intermittency transitions to chaos”, Phys. Rev. A 40, 1576 (1989).

    Article  MathSciNet  Google Scholar 

  • F. J. Romeiras, C. Grebogi and E. Ott, “Multifractal properties of snapshot attractors of random maps”, Phys. Rev. A 41, 784 (1990).

    MathSciNet  Google Scholar 

  • M. Toda, S. Adachi & K. Ikeda, “Dynamical aspects of quantum-classical correspondence in quantum chaos”, to appear in Suppl. Prog. Theor. Phys, No. 98 (1989).

    Google Scholar 

  • J. A. Vastano, J. E. Pearson, W. Horsthemke & H. L. Swinney, “Turing patterns in an open reactor”, J. Chem. Phys. 88, 6175 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Abraham, N.B., Albano, A.M., Tufillaro, N.B. (1989). Complexity and Chaos. In: Abraham, N.B., Albano, A.M., Passamante, A., Rapp, P.E. (eds) Measures of Complexity and Chaos. NATO ASI Series, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0623-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0623-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0625-3

  • Online ISBN: 978-1-4757-0623-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics