Complexity and Chaos

  • N. B. Abraham
  • A. M. Albano
  • N. B. Tufillaro
Part of the NATO ASI Series book series (NSSB, volume 208)


Turbulence was one of the key phenomena that motivated the resurgence of interest in nonlinear dynamical systems. It was, after all, investigations into the mechanisms for turbulence that led Ruelle and Takens to invent the term “strange attractor” in 1971. The turbulence that is described by strange attractors is “turbulence in time” (Schuster, 1988) -- deterministic chaos, or temporal chaos in current terminology. In the past decade, a vocabulary for the quantitative characterization of temporal chaos has been developed, and has been used to describe and analyze an incredible variety of phenomena in practically all fields of science and engineering. The dimensions of strange attractors, and the entropies and Lyapunov exponents describing motions on them, have been used to analyze heartbeats and brain waves, chemical reactions, lasers, the economy, x-ray emissions of stars, flames, and fluid flow ...


Fractal Dimension Lyapunov Exponent Chaotic Attractor Saturable Absorber Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (Alphabetical)

  1. H. Abarbanel, R. Brown, and J. Kadtke, “Prediction and system identification in chaotic nonlinear systems: time series with broadband spectra”, Phys. Lett. A 18, 401 (1989).Google Scholar
  2. N. B. Abraham, A. M. Albano, B. Das, T. Mello, M. F. H. Tarroja, N. Tufillaro, and R. S. Gioggia, “Definitions of chaos and measuring its characteristics”, in: Optical Chaos, J. Chrostowski and N. B. Abraham eds. (Proc. SPIE 667, 1986 ).Google Scholar
  3. N. B. Abraham, J. P. Gollub, and H. Swinney, “Testing nonlinear dynamics”, Physica. 11D, 252 (1984).zbMATHCrossRefGoogle Scholar
  4. N. B. Abraham, A. M. Albano, B. Das, G. DeGuzman, S. Young, R. S. Gioggia, G. P. Puccioni, J. R. Tredicce, “Calculating the dimension of attractors from small data sets”, Phys. Lett. 114A, 217 (1986).CrossRefGoogle Scholar
  5. N. B. Abraham, et al., “Experimental measurements of transitions to pulsations and chaos in a single mode, unidirectional ring laser”, in:Instabilities and chaos in quantum optics, F.T. Arecchi and R.G. Harrison, eds. ( Springer-Verlag, Berlin, 1987 ).Google Scholar
  6. N. B. Abraham, F.T. Arecchi, and L.A. Lugiato, eds., Instabilities and chaos in quantum optics II ( Plenum, New York, 1988 ).Google Scholar
  7. A. M. Albano, J. Muench, C. Schwartz, A. I Mees, and P. E. Rapp, “Singular-value decomposition and the Grassberger-Procaccia algorithm”, Phys. Rev. A 38, 3017 (1988).MathSciNetCrossRefGoogle Scholar
  8. A. M. Albano, A. I. Mees, G. C. de Guzman and P. E. Rapp, “Data requirements for reliable estimation of correlation dimensions”, in: Chaos in Biological Systems, H. Degn, A.V. Holden & L.F. Olsen, eds. ( Plenum, Oxford, 1987 ).Google Scholar
  9. A. M. Albano, L. Smilowitz, P. E. Rapp, G. C. de Guzman, R. R. Bashore, “Dimension calculations in a minimal embedding space”, in: Physics of Phase Space, Y. S. Kim and W. W. Zachary, eds. ( Springer, Berlin, 1988 ).Google Scholar
  10. V. S. Anischenko and H. Herzel, “Noise-induced chaos in a system with homoclinic points”, Z. Angew. Math. Mech. 68, 317 (1988).MathSciNetCrossRefGoogle Scholar
  11. J. C. Antoranz and M. A. Rubio, “Hyperchaos in a simple model for a laser with a saturable absorber”, J. Opt. Soc. Am. B 5, 1070 (1988).CrossRefGoogle Scholar
  12. F. T. Arecchi, “Instabilities and chaos in single-mode homogenous line lasers”, in: Instabilities and chaos in quantum optics, F.T. Arecchi and R.G. Harrison, eds. ( Springer-Verlag, Berlin, 1987 ).CrossRefGoogle Scholar
  13. F. T. Arecchi, A. Lapucci, R. Meucci, A. Rovers & P.H. Coullet, “Experimental characterization of Shil’nikov chaos by statistics of return times”, Europhys. Lett. 6, 677 (1988).CrossRefGoogle Scholar
  14. F. T. Arecchi, W. Gadomski, A. Lapucci, H. Mancini, R. Meucci & J.A. Roversi, “Laser with feedback on optical implementation of competing instabilities, Shil’nikov chaos and transient fluctuation enhancement”, J. Opt. Soc. Am. B 5, 1153 (1988).CrossRefGoogle Scholar
  15. F. T. Arecchi, “Shil’nikov chaos: How to characterize homoclinic and heteroclinic behaviour”, This volume.Google Scholar
  16. F. Argoul, A. Arneodo, J. Elzgaray & G. Grasseau, “Characterizing spatio-temporal chaos in electrodeposition experiments”, This volume.Google Scholar
  17. F. Argoul, A. Arneodo & P. Richetti, “Experimental evidence of homoclinic chaos in the belusov-Zhabotinskii reaction”, Phys. Lett. 120A, 269 (1987).CrossRefGoogle Scholar
  18. F. Argoul, A. Arnéodo, G. Grasseau, Y. Gagne, E. J. Hopfinger & U. Frisch, “Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascase”, Nature 338, 51, (1989).CrossRefGoogle Scholar
  19. A. Arneodo, P. Coullet & C. Tresser, “Oscillators with chaotic behavior: an illustration of a theorem by Shilnikov”, J. Stat. Phys. 27, 171 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  20. A. Arneodo, P. Coullet, C. Tresser, J. Stat. Phys. 27, 171 (1982)zbMATHCrossRefGoogle Scholar
  21. A. Arneodo, P. H. Coullet, E. A. Spiegel & C. Tresser, Physica 14D, 327 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  22. H. Atmanspacher, V. Demmel, G. Morfill, H. Scheingraber, W. Voges & G. Wiedenmann, “Measures of dimensions from astrophysical data”, This volume.Google Scholar
  23. P. Atten, J. G. Caputo, B. Malraison and Y. Gagne, “Determination de dimension d’attracteurs pour differents ecoulements”, J. Mec. theor. et appl. Numero special, 133 (1984).Google Scholar
  24. D. Auerbach, P. Cvitanovic, J-P. Eckmann, G. Gunarante, I. Procaccia, “Exploring chaotic motion through periodic orbits”, Phys. Rev. Lett. 58, 2387 (1987).MathSciNetCrossRefGoogle Scholar
  25. D. Auerbach, B. O’Shaughnessy & I. Procaccia, “Scaling structure of strange attractors”, Phys. Rev. A 37, 2234 (1988).Google Scholar
  26. D. Auerbach, “Dynamical complexity of strange sets”, This volume.Google Scholar
  27. A. Babloyantz, “Chaotic dynamics in brain activity”, in: Dynamics of Sensory and Cognitive Processing by the Brain, E. Basar, ed., ( Springer-Verlag, Berlin, 1988 ).Google Scholar
  28. A. Babloyantz and A. Destexhe, “The creutzfeld-Jakob disease in the hierarchy of chaotic attractors”, in: From chemical to biological organization, M. Markus, S. Muller and G. Nicolis, eds., ( Springer-Verlag, Berlin, 1988 ).Google Scholar
  29. A. Babloyantz, J. M. Salazar & C. Nicolis, “Evidence of chaotic dynamics of brain activity during the sleep cycle”, Phys. Lett. 111A, 152 (1985).CrossRefGoogle Scholar
  30. R. Badii, “Unfolding complexity in nonlinear dynamical systems”, This volumeGoogle Scholar
  31. R. Badii and G. Broggi, “Hierarchies of relations between partial dimensions and local expansion rates in strange attractors”, This volume.Google Scholar
  32. R. Badii, K. Heinzelmann, P. F. Meier & A. Politi, “Correlation functions and generalized Lyapunov exponents”, Phys. Rev A. 37, 1323 (1988).MathSciNetGoogle Scholar
  33. R. Badii and G. Brocci, “Measurement of the dimension spectrum f(a): fixed mass approach”, Phys. Lett. 131A, 339 (1988).CrossRefGoogle Scholar
  34. R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi & M. A. Rubio, “Dimension increase in filtered chaotic signals”, Phys. Rev. Lett. 60, 979 (1988).CrossRefGoogle Scholar
  35. R. Badii and A. Politi, “Renyi dimensions from local expansion rates”, Phys. Rev. A 35, 1288 (1987).MathSciNetGoogle Scholar
  36. R. Badii and A Politi, “Statistical description of chaotic attractors: the dimension function”, J. Stat. Phys. 40, 725 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  37. D. Barkley and A. Cummings, “Experimental study of the multifractal structure of the quasiperiodic set”, This volume.Google Scholar
  38. M. F. Barnsley, Fractals Everywhere ( Academic Press, New York, 1988 )zbMATHGoogle Scholar
  39. P. M. Battelino, C. Grebogi, E. Ott & J. Yorke, “Multiple coexisting attractors, basin boundaries & basic sets”, Physica D 32, 296 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  40. D. Bensen, M. Welge, A. Hübler, N. Packard, “Characterization of complexity in systems by aperiodic driving forces”, This volume.Google Scholar
  41. D. Bensimon, B. I. Shraiman & V. Croquette, “Nonadiabatic effects in convection”, Phys. Rev. A 38, 5461 (1989).Google Scholar
  42. T. Bohr and M. H. Jensen, “ Order parameter, symmetry breaking & phase transitions in the description of multifractal sets”, Phys. Rev. A 36, 4904 (1987).MathSciNetGoogle Scholar
  43. A. Brandstatter and H. Swinney, “ Strange Attractors in Weakly Turbulent Couette-Taylor Flow”, Phys. Rev. A 35, 2207 (1987).Google Scholar
  44. W. A. Brock and W. D. Dechert, “Statistical inference theory for measures of complexity in chaos theory and nonlinear science”, This volume.Google Scholar
  45. G. Broggi, “Evaluation of dimensions and entropies of chaotic systems”, J. Opt. Soc. Am. B 5, 1020 (1988).CrossRefGoogle Scholar
  46. D. S. Broomhead and G. P. King, “Extracting Qualitative Dynamics from Experimental Data”, Physica 20D, 217 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  47. D. S. Broomhead, R. Jones & G. P. King, “Topological dimension and local coordinates from time series data”, J. Phys A 20, L563 (1987).MathSciNetGoogle Scholar
  48. D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data”, Physica 20D, 217 (1986a).MathSciNetzbMATHCrossRefGoogle Scholar
  49. R. E. Byers and R. I. C. Hansell, “Stablization of prolific populations through migration and long-lived propagules”, This volume.Google Scholar
  50. R. E. Byers, R. I. C. Hansell & N. Madras, “Complex behavior of systems due to semi-stable attractors: attractors that have been destablized but which still temporaily dominate the dynamics of a system”, This volume.Google Scholar
  51. J. G. Caputo, “Practical remarks on the estimation of dimension and entropy from experimental data’, This volume.Google Scholar
  52. K. Chang, A. Hübler, N. Packard, “Universal properties of the resonance curve of complex systems”, This volume.Google Scholar
  53. A. Chhabra and R. V. Jensen, “Direct determination of f(a) singularity spectrum”, Phys. Rev. A 31, 1872 (1989).Google Scholar
  54. S. Ciliberto and P. Bigazzi, “Spatiotemporal intermittency in Rayleigh-Bernard convection”, Phys. Rev. Lett. 60, 286 (1988).CrossRefGoogle Scholar
  55. S. Ciliberto and J. P. Gollub, “Pattern competition leads to chaos”, Phys. Rev. Lett. 52, 922 (1984).CrossRefGoogle Scholar
  56. S. Ciliberto, “Characterizing space-time chaos in an experiment of thermal convection.”, This volumeGoogle Scholar
  57. P. Coullet, L. Gil & F. Rocca, “Optical vortices”, Opt. Commun., in pressGoogle Scholar
  58. P. Coullet, L. Gil & J. Lega, “Defect-mediated trubulence”, Phys. Rev. Lett. 62, 1619 (1989).CrossRefGoogle Scholar
  59. P. Coullet and J. Lega, “Defect-mediated turbulence in wave patterns”, Europhys. Lett. 7, 511 (1988).CrossRefGoogle Scholar
  60. P. Coullet, “Defect-induced spatio-temporal chaos”, This volume.Google Scholar
  61. J. P. Crutchfield, “Inferring the dynamic, quantifying physical complexity”, This volume.Google Scholar
  62. J. P. Crutchfield, J. D. Farmer, N. H. Packard & R. Shaw, “Chaos”, Sci. Am. 255, 46 (1986).CrossRefGoogle Scholar
  63. J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data series”, Complex Systems 1, 417 (1987).MathSciNetzbMATHGoogle Scholar
  64. J. P. Crutchfield and K. Young, “Inferring statistical complexity”, Phys. Rev. Lett. 63, 10 (1989).MathSciNetCrossRefGoogle Scholar
  65. P. Cvitanovic, Universality in Chaos, ( Adam Hilger, Bristol, 1986 ).Google Scholar
  66. D. Dangoisse, A. Bekkali, F. Papoff & P. Glorieux, “Shilnikov dynamics in a passive Q-switching laser”, Europhys. Lett. 6, 335 (1988).CrossRefGoogle Scholar
  67. A. Destexhe, G. Nicolis & C. Nicolis, “Symbolic dynamics from chaotic time series”, This volume.Google Scholar
  68. A. Desteche, J. A. Sepulchre & A. Babloyantz, “A comparative study of experimental quantification of deterministic chaos”, Phys. Lett. 132A, 101 (1988).CrossRefGoogle Scholar
  69. M. Ding, C. Grebogi & E. Ott, “Dimensions of strange nonchaotic attractors”, .Phys. Lett. 137A, 167 (1989).MathSciNetCrossRefGoogle Scholar
  70. M. Dorf le, “Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map”, .J. Stat. Phys. 40, 93 (1985).MathSciNetCrossRefGoogle Scholar
  71. B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot & S. W. Zucker, Evaluating the fractal dimension of profiles“, Phys. Rev. A 39, 1500 (1989).MathSciNetGoogle Scholar
  72. J. P. Eckmann, S. Oliffson Kamphorst & D. Ruelle, “Recurrence plots of dynamical systems”, Europhysics Lett. 4, 973 (1987).CrossRefGoogle Scholar
  73. J-P. Eckmann, S. O. Kamphorst, D. Ruelle & S. Ciliberto, “Lyapunov exponents from a time series”, Phys. Rev. A 34, 4971 (1986).MathSciNetGoogle Scholar
  74. J-P. Eckmann and D. Ruelle, “Erogdic theory of chaos and strange attractors”, Rev. Mod. Phys. 57, 617 (1985).MathSciNetCrossRefGoogle Scholar
  75. S. Ellner, “Estimating attractor dimensions from limited data: a new method with error estimates”, Phys. Lett. 133A, 128 (1988).CrossRefGoogle Scholar
  76. R. M. Everson, “Lyapunov exponents, dimension and entropy in coupled lattice maps”, This volume.Google Scholar
  77. G. Fahner and P. Grassberger, “Entropy estimates for dynamical systems”, Complex Systems 1, 1093 (1987).MathSciNetzbMATHGoogle Scholar
  78. J. Fang, “Evolution of the irreversible beam dynamical variable and applications”, This volume.Google Scholar
  79. J. Fang, “The effects of external noise on complexity in two dimensional driven damped dynamical system”, This volume.Google Scholar
  80. J. D. Farmer and J. J. Sidorovich, “Predicting chaotic time series”, Phys. Rev. Lett. 59, 845 (1987).MathSciNetCrossRefGoogle Scholar
  81. J. D. Farmer and J. J. Sidorovich, “Exploiting chaos to predict the future and reduce noise”, in: Evolution, Learning and Cognition ( World Scientific, Singapore, 1988 ).Google Scholar
  82. J. D. Farmer, E. Ott & J. A. Yorke, “The dimension of chaotic attractors”, Physica 7D, 153 (1983).MathSciNetCrossRefGoogle Scholar
  83. M. Frame, “Chaotic behavior of the forced Hodgkin-Huxley axon”, This volume.Google Scholar
  84. G. W. Frank, T. Lookman, M. A. H. Nerenberg, “Chaotic time series analysis using short and noisy data sets: application to a clinical epilepsy seizure”, This volume.Google Scholar
  85. A. M. Fraser, “Measuring complexity in terms of mutual information”, This volume.Google Scholar
  86. A. M. Fraser and H. L Swinney, “Independent Coordinates for Strange Attractors from Mutual Information”, Phys. Rev. A 33, 1134 (1986).MathSciNetGoogle Scholar
  87. W. J. Freeman, “Simulation of chaotic EEG patterns with a dynamic model of the olfactory system”, Biol. Cybern. 56, 139 (1987).CrossRefGoogle Scholar
  88. K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic dimensionality of data”, IEEE Trans. Comput. C-20, 176 (1971).CrossRefGoogle Scholar
  89. S. T. Gaito and G. P. King, “Chaos on a catastrophe manifold”, This volume.Google Scholar
  90. J. M. Gambaude, P. Glendinning & C. Tresser, “The gluing bifurcation: I. Symbolic dynamics of closed curves”, Nonlinearity 1, 203 (1988).MathSciNetCrossRefGoogle Scholar
  91. P. Gaspard, R. Kapral & G. Nicolis, J. Stat. Phys. 35, 697 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  92. D. J. Gauthier, M. S. Malcuit & R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor”, Phys. Rev. Lett. 61, 1827 (1988).CrossRefGoogle Scholar
  93. R. Gilmore, G. Mindlin, H. G. Solari, “Topological frequencies in dynamical systems”, This volume.Google Scholar
  94. J. A. Glazier, G. Gunaratne & A. Libchaber, “f(a) curves: experimental results”, Phys. Rev. A 37, 523 (1988).Google Scholar
  95. J. Gleick, Chaos, Making a New Science (Viking, New York, 1987 ).Google Scholar
  96. P. Glendinning and C. Sparro, J. Stat. Phys. 35, 645 (1984)zbMATHCrossRefGoogle Scholar
  97. P. Glendinning, “Time series near codimension two global bifurcations”, This volume.Google Scholar
  98. J. N. Glover, “Estimating lyapunov exponents from approximate return maps”, This volume.Google Scholar
  99. A. Goel, S. S. Rao & A. Passamante, “Estimating local intrinsic dimensionality using thresholding techniques”, This volume.Google Scholar
  100. J. P. Gollub, “Characterizing dynamical complexity in interfacial waves”, This volume.Google Scholar
  101. J. P. Gollub and C. W. Meyer, “Symmetry-breaking instabilities on a fluid surface”, Physica 6D, 337 (1983).CrossRefGoogle Scholar
  102. P. Grassberger, “Finite sample corrections to entropy and dimension estimates”, Phys. Lett. 128A, 369 (1988).MathSciNetCrossRefGoogle Scholar
  103. P. Grassberger, R. Badii & A. Politi, “Scaling laws for invariant measures on hyperbolic and non-hyperbolic attractors”, J. Stat. Phys. 51, 135 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  104. P. Grassberger, “Are 323, 609 (1987). there really climatic attractors?”, NatureGoogle Scholar
  105. P. Grassberger and I. Procaccia, “Characterization of Strange. Rev. Lett. 50, 346 (1983).MathSciNetCrossRefGoogle Scholar
  106. P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov Entropy from a Chaotic Signal”, Phys. Rev. A 28, 2591 (1983a).CrossRefGoogle Scholar
  107. P. Grassberger and I. Procaccia, “Measuring the Strangeness of Strange Attractors”, Physica 9D, 189 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  108. C. Grebogi, E. Ott & J. A. Yorke, “Unstable periodic orbits and the dimensions of multifractal chaotic attractors”, Phys. Rev. A 37, 1711 (1988).MathSciNetGoogle Scholar
  109. C. Grebogi, E. Ott & J. A. Yorke, “Unstable periodic orbits and the dimension of chaotic attractors”, Phys. Rev. A 36, 3522 (1987).MathSciNetGoogle Scholar
  110. J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems & Bifurcation of Vector Fields” in: Applied Mathematical Sciences 42 ( Springer-Verlag, New York, 1983 ).Google Scholar
  111. G. H. Gunaratne, M. H. Jensen & I. Procaccia, “Universal strange attractors on wrinkled tori”, Nonlinearity 1, 157 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  112. H. Haken, Information and self-organization: a marcroscopic approach to complex systems, Springer Series in Synergetics 40 ( Springer-Verlag, Berlin, 1988 ).Google Scholar
  113. T. C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia & B.I. Shraiman, “Fractal Measures and their Singularities: The characterization of strange sets”, Phys. Rev. A 33, 1141 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  114. Hao Bai-lin, “Bifurcation and chaos in the periodically forced Brusselator” (Collected Papers Dedicated to Professor Kazuhisa Tomita, Kyoto University, 1987 ).Google Scholar
  115. Hao Bai-Lin, Chaos, ( World Scientific, Singapore, 1984 ).zbMATHGoogle Scholar
  116. K. Hartt and L. M. Kahn, “Seeking dynamically connected chaotic variables.” This volume.Google Scholar
  117. J. W. Haystad and C. L. Ehlers, “Attractor dimension of nonstationary dynamical systems from small data sets”, Phys. Rev. A 39, 845 (1989).Google Scholar
  118. D. Hennequin, M. Lefranc, A. Bekkali, D. Dangoisse & P. Glorieux, “Characterization of Shilnikov chaos in a CO2 laser containing a saturable absorber”, This volume.Google Scholar
  119. D. Hennequin, F. de Tomasi, L. Fronzoni, B. Zambon & E. Arimondo, “Shil.nikov chaos and noise in a laser with saturable absorber”, Opt. Commun., in press (1989).Google Scholar
  120. M. Henon, “A two-dimensional mapping with a strange attractor”, Comm. Math. Phys. 50, 69 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  121. H. G. E. Hentschel and I. Procaccia, “The infinite number of generalized dimensions of fractals and strange attractors”, Physica 8D, 435 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  122. H.-P. Herzel and B. Pompe, “Effects of noise on a nonuniform chaotic map”, Phys. Lett. 122A, 121 (1987).MathSciNetCrossRefGoogle Scholar
  123. H. Herzel, “Stabilization of chaotic orbits by random noise”, Z. Angew. Math. Mech. 68, 582 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  124. F. Heslot, B. Castaing, A. Libchaber, “ Transition to turbulence in helium gas”, Phys. Rev. A 36, 5870 (1987).Google Scholar
  125. A. V. Holden, ed., Chaos, (Princeton University Press, Princeton, 1986 ).Google Scholar
  126. G-H. Hsu, E. Ott, C. Grebogi, “Strange saddles and the dimensions of their invariant manifolds”, .Phys. Lett. 127A, 199 (1988).MathSciNetCrossRefGoogle Scholar
  127. U. Hübner, W. Klische, N. B. Abraham & C. O. Weiss, “On problems encountered with dimension calculations”, This volume.Google Scholar
  128. U. Hübner, N.B. Abraham and C.O. Weiss, “Dimensions and Entropies of Chaotic Intensity Pulsations in a Single-Mode FIR NH3 Laser”, Physical Review A, to be published 1989Google Scholar
  129. F. Hunt, “Error analysis and convergence of capacity dimension algorithms”, preprint.Google Scholar
  130. A. Hurd, “Resource letter FR-1: Fractals”, Am. J. Phys. 56, 969 (1988).MathSciNetCrossRefGoogle Scholar
  131. K. Ikeda and K. Matsumoto, “Study of a high-dimensional chaotic attractor”, >J. Stat. Phys. 44, 955 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  132. K. Ikeda and K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback”, .Physica. 29D, 223 (1987).zbMATHCrossRefGoogle Scholar
  133. M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia and J. Stavans, “Global universality at the onset of chaos: Results on a forced Rayleigh-Benard experiment”, Phys. Rev. Lett. 55, 22798 (1987).Google Scholar
  134. J. L. Kaplan and J. A. Yorke, “Functional differential equations and approximations of fixed points”, in Lecture Notes in Mathematics, 13, H.O. Peitgen and H.O. Walther, eds. ( Springer, Berlin, 1979 ).Google Scholar
  135. F. Kasper and H. G. Schuster, “Easily calculable measure for the complexity of spatiotemporal patterns”, Phys. Rev. A. 36, 842 (1987).Google Scholar
  136. S. Kim, S. Ostlund, G. Yu, “Fourier analysis of multi-frequency dynamical systems”, .Physica. 31D, 117 (1989).MathSciNetGoogle Scholar
  137. P. Kolodner, D. Bensimon & C. M. Surko, “Traveling-wave convection in an annulus”, Phys. Rev. Lett. 60, 1723 (1988).CrossRefGoogle Scholar
  138. E. Kostelich and J. A. Yorke, “Noise reduction in dynamical systems”, Phys. Rev. A 38, 1649 (1988).MathSciNetGoogle Scholar
  139. W. Lange and M. Moller, “Systematic errors in estimating dimensions from experimental data”, This volume.Google Scholar
  140. D. P. Lathrop and E. J. Kostelich, “Analyzing periodic saddles in experimental strange attractors”, This volume.Google Scholar
  141. M. Le Berre, E. Ressayre & A. Tallet, “Phase transitions induced by deterministic delayed forces”, This volume.Google Scholar
  142. C.-K. Lee and F. C. Moon, “An optical technique for measuring fractal dimensions of planar Poincare maps”, .Phys. Lett. 114A, 222 (1986).MathSciNetCrossRefGoogle Scholar
  143. W. Li, “Mutual information functions versus correlation functions in binary sequences”, This volume.Google Scholar
  144. B. Mandelbrot, The Fractal Geometry of Nature, ( Freeman, San Francisco, 1982 )zbMATHGoogle Scholar
  145. J. M. Martinerie, A. M. Albano, A. I. Mees, P. E. Rapp, “Mutual information, strange attrators and optimal estimation of dimension”, preprint, submitted to Phys. Rev A.Google Scholar
  146. G. Mayer-Kress and A. Hübler, “Time evolution of local complexity measures and aperiodic perturbations of nonlinear dynamical systems”, This volume.Google Scholar
  147. G. Mayer-Kress, ed., Dimensions and Entropies in Chaotic Systems - - Quantification of Complex Behavior, Springer Series in Synergetics 32 ( Springer-Verlag, Berlin, 1986 ).Google Scholar
  148. A. Mees, “Modeling dynamical systems from real-world data”, This volume.Google Scholar
  149. A. I. Mees, P.E. Rapp & L.S. Jennings, “Singular-value decomposition and embedding dimension”, Phys. Rev. A 37, 4518 (1988).CrossRefGoogle Scholar
  150. T. Meyer, A. Hübler, N. Packard, “Reduction of complexity by optimal driving forces”, This volume.Google Scholar
  151. F. Mitschke, M. Moller & W. Lange, “Measuring filtered chaotic signals”, Phys. Rev. A. 37, 4518 (1988).Google Scholar
  152. M. Möller, W. Lange, F. Mitschke, N.B. Abraham & U. Hübner, “Errors from Digitizing and Noise in Estimating Attractor Dimensions”, Phys. Lett. A 138, 176–182 (1989)Google Scholar
  153. T. C. Molteno and N. B. Tufillaro, “Torus doubling and chaotic string vibrations: experimental results”, J. Sound Vib., in press.Google Scholar
  154. G. J. Mpitsos, H. C. Creech & S. O. Soinilla, “Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns”, Brain Res. Bull. 21, 529 (1988).CrossRefGoogle Scholar
  155. G. J. Mpitsos, H. C. Creech, C. S. Cohan & M. Mendelson, “Variability and chaos: Neurointegrative principles in self-organization of motor patterns”, in: Dynamic Patterns in Complex Systems, J.A.S. Kelso, et al., eds. ( World Scientific, Singapore, 1988 ).Google Scholar
  156. A. C. Newell, D. A. Rand & D. Russell, “Turbulent dissipation rates and the random occurrence of coherent events”, .Phys. Lett. 132A, 112 (1988).MathSciNetCrossRefGoogle Scholar
  157. B. Nicolaneko and Zhen-Su She, “Symmetry breaking homoclinic chaos”, This volume.Google Scholar
  158. G.-L. Oppo, M. A. Pernigo, L. M. Narducci & L. A. Lugiato, “Characterization of spatiotemporal structures in lasers: a progress report”, This volume.Google Scholar
  159. E. Ott, C. Grebogi & J. A. Yorke, “Theory of first order phase transitions for chaotic attractors of nonlinear systems”, .Phys. Lett. 135A, 342 (1989).MathSciNetGoogle Scholar
  160. E. Ott, “Strange attractors and chaotic motion of dynamical systems”, .Rev. Mod. Phys. 53, 655 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  161. N. H. Packard, J. P. Crutchfield, J. D. Farmer & R. S. Shaw, “Geometry from a time series”, Phys. Rev. Lett. 45, 712 (1980).CrossRefGoogle Scholar
  162. F. Papoff, A. Fioretti & E. Arimondo & N. B. Abraham, “Time return maps and distributions for laser with saturable absorber”, This volume.Google Scholar
  163. T. S. Parker and L. O. Chua, “Chaos: A tutorial for engineers”, .Proc. IEEE. 75, 982 (1987).CrossRefGoogle Scholar
  164. A. Passamante, T. Hediger & M. E. Farrell, “Analysis of local space/time statistics and dimensions of attractors using singular value decompostion and information theoretic criteria”, This volume.Google Scholar
  165. A. Passamante, T. Hediger & M. Gollub, “Fractal dimension and local intrinsic dimension”, Phys. Rev. A 39, 3640 (1989).MathSciNetGoogle Scholar
  166. K. Pawelzik and H. G. Schuster, “Generalized dimensions and entropies from a measured time series”, Phys. Rev. A 35, 481 (1987);Google Scholar
  167. K. Pawelzik and H. G. Schuster, “Generalized dimensions and entropies from a measured time series”,Errata, Phys. Rev. A 36, 4529 (1987).Google Scholar
  168. H. O. Peitgen and D. Saupe, eds., The Science of Fractal Images, ( Sprigner Verlag, New York, 1988 )Google Scholar
  169. H. O. Peitgen and P. H. Richter, The beauty of fractals“ ( Springer-Verlag, Berlin, 1986 )CrossRefGoogle Scholar
  170. C. Pérez-Garcia, E. Pampaloni and S. Ciliberto, “Amplitude equations for hexagonal patterns of convection in non-Boussinesq fluids”, This volume.Google Scholar
  171. A. Politi, G. D’Alessandro, A. Torcini, “Fractal dimensions in coupled map lattices”, This volume.Google Scholar
  172. I. Procaccia, “Weak turbulence and the dynamics of topological defects”, This volume.Google Scholar
  173. J. B. Ramsey and H-J. Yuan, “Bias and error bars in dimension calculations and their evaluation in some simple models”, .Phys. Lett. 134A, 287 (1989).CrossRefGoogle Scholar
  174. P. E. Rapp, I. D. Zimmerman, A. M. Albano, G. C. de Guzman & N. N. Greenbaun, “Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons”, .Phys. Lett. 110A, 335 (1985).CrossRefGoogle Scholar
  175. P. E. Rapp, I. D. Zimmerman, T. R. Bashore, A.M. Albano, G.C. de Guzman & N. N. Bashore, “Experimental studies of chaotic neural behavior: cellular activity and electroencephalographic signals”, in: Nonlinear oscillations in biology and chemistry. H. G. Othmer, ed. ( Springer-Verlag, Berlin, 1985 ).Google Scholar
  176. P. E. Rapp, A. M. Albano & A. I. Mees, “Calculation of correlation dimensions from experimental data: Progress and problems”, in: Dynamic Patterns in Complex Systems. J. A. S. Kelso, et al, eds. ( World Scientific, Singapore, 1988 ).Google Scholar
  177. M. G. Raymer, “Entropy and correlation time in a multimode dye laser”, This volume.Google Scholar
  178. A. Renyi, Probability Theory, ( North-Holland, Amsterdam, 1970 ).Google Scholar
  179. P. Richetti, J. C. Roux, F. Argoul & A. Arneodo, “From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction. II Modeling and theory”, J. Chem. Phys. 86, 3339 (1987)MathSciNetCrossRefGoogle Scholar
  180. J. Ringland and M. Schell, “Pattern cardinality as a characterization of dynamical complexity”, This volume.Google Scholar
  181. J. Ringland and M. Schell, “The Farey tree embodied in bimodal maps of the interval”, Phys. Lett. 136A, 379 (1989).MathSciNetCrossRefGoogle Scholar
  182. O. E. Rössler, Phys. Lett. 71A, 155 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  183. M. A. Rubio, A. D. Dougherty & J. P. Gollub, “Characterization of irregular interfaces: Roughness and self-affine fractals. This volume.Google Scholar
  184. D. Ruelle and F. Takens, “On the nature of turbulence”, Commun, Math. Phys. 20, 167 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  185. Y. A. Rzhanov and Y. D. Kalafati, “Spatial structure multistability in an array of optically bistable elements”, Opt. Commun. 70, 161 (1989).CrossRefGoogle Scholar
  186. S. Sato, M. Sano & Y. Sawada.,“Practical methods of measuring the generalized dimension and the largest lyapunov exponent,in high dimensional chaotic systems”, Prog. Theor. Phys. 77, 1 (1987)MathSciNetCrossRefGoogle Scholar
  187. C. L. Sayers, “Dimension calculation precison with finite data sets”, This volume.Google Scholar
  188. W. M. Schaffer and L. F. Olsen, “Chaos in childhood epidemics”, This volume.Google Scholar
  189. M. Schell, S. Fraser & R. Kapral, “Diffusive dynamics in systems with translational symmetry: a one-dimensional-map model”, Phys. Rev. A 26, 504 (1982).MathSciNetCrossRefGoogle Scholar
  190. H. G. Schuster, Deterministic Chaos, ( VCH Verlagsgesselschaft, Weinheim, 1988 ).Google Scholar
  191. H. G. Schuster, “Extraction of models from complex data”, This volume.Google Scholar
  192. M. A. Sepulveda and R. Badii, “Symbolic dynamical resolution of power spectra”, This volume.Google Scholar
  193. R.. Shaw, “Strange attractors, chaotic behavior & information flow”, Z. Naturforsch. 36A, 80 (1981)MathSciNetzbMATHGoogle Scholar
  194. L. P. Shil’nikov, Dokl. Akad. Nauk SSSR 160, 558 (1965).Google Scholar
  195. L. P. Shil’nikov, Mat. Sbornik. 77, 119 (1968).Google Scholar
  196. L. P. Shil’nikov, Mat. Sbornik 461 (1968).Google Scholar
  197. L. P. Shil’nikov, Mat. Sbornik 81, (123), 92 (1970).Google Scholar
  198. L. P. Shil’nikov, (Eng. Trans.: Sov. Math. Doklady 3, 394 (1962).).zbMATHGoogle Scholar
  199. L. P. Shil’nikov, (Eng. Trans.: Sov. Math. Doklady 6, 163 (1965).Google Scholar
  200. L. P. Shil’nikov, (Eng. Trans.: Sov. Math. Doklady 8, 54 (1967).zbMATHGoogle Scholar
  201. L. P. Shil’nikov, Math USSR Sbornik 6, 427 (1968).CrossRefGoogle Scholar
  202. L. P. Shil’nikov, Math USSR Sbornik 10, 91 (1970).zbMATHCrossRefGoogle Scholar
  203. F. Simonelli and J. P. Gollub, “Surface wave mode interactions: effects of symmetry and degeneracy”, J. Fluid Mech. 199, 471 (1989).MathSciNetCrossRefGoogle Scholar
  204. C. A. Skarda and W. J. Freeman, “How brains make chaos in order to make sense of the world”, Behavioral and Brain Sciences 10, 161 (1987).CrossRefGoogle Scholar
  205. L. A. Smith, “Quantifying chaos with predictive flows and maps: locating unstable periodic orbits”, This volume.Google Scholar
  206. L. A. Smith, “Intrinsic limits on dimension calculations”. Phys. Lett. 133A, 283 (1988).CrossRefGoogle Scholar
  207. H. G. Solari and R. Gilmore, “Relative rotation rates from driven dynamical systems”, This volume.Google Scholar
  208. H. G. Solari, Xin-Jun Hou & R. Gilmore, “Stretching, folding and twisting in driven damped Duffing device”, This volume.Google Scholar
  209. R. Stoop and P. F. Meier, “Evaluation of Lyapunov exponents and scaling functions from time series”, J. Opt. Soc. Am. B 5, 1037 (1988).CrossRefGoogle Scholar
  210. Z. Su, R. W. Rollins & E. R. Hunt, “Measurement of f(Œ) for multifractal attractors in driven diode resonator systems”, This volume.Google Scholar
  211. Z. Su, R. W. Rollins and E. R. Hunt, “Measurement of f(a) spectra of attractors at transitions to chaos in driven diode resonator systems”, Phys. Rev. A 36, 3515 (1987).CrossRefGoogle Scholar
  212. F. Takens, “Invariants related to dimensions and entropy”, in: Atas do 13 Cologkio Brasiliero do Matematica (Rio de Janerio, 1983 ).Google Scholar
  213. F. Takens, “On the numerical determination of the dimension of an attractor”, in: Dynamical Systems and Bifurcations, Groningen, 1984. Lecture Notes in Mathematics 1125 ( Springer-Verlag, Berlin, 1985 ).Google Scholar
  214. F. Takens, “Detecting strange attractors in turbulence”, in: Dynamical Systems and Turbulence, Warwick, 1980. Lecture Notes in Mathematics 898, ( Springer-Verlag, Berlin, 1981 )Google Scholar
  215. W. Y. Tam, J. A. Vastano, H. L. Swinney, W. Horsthemke, “Regular and chaotic chemical spatiotemporal patterns”, Phys. Rev. Lett. 61, 2163 (1988).CrossRefGoogle Scholar
  216. C. Tatum, “The field patterns of a hybrid mode laser: detecting the ”hidden“ bistability of the optical phase pattern”, This volume.Google Scholar
  217. Y. Termonia and Z. Alexandrowicz, “Fractal dimensions of strange attractors from radius versus size of arbitrary clusters”, Phys. Rev. Lett. 51, 1265 (1983).MathSciNetCrossRefGoogle Scholar
  218. J. Theiler, “Statistical error in dimension estimators”, This volume.Google Scholar
  219. J. Theiler, “Lacunarity in a best estimator of fractal dimension”, Phys. Lett. 133A, 195 (1988).MathSciNetCrossRefGoogle Scholar
  220. J. R. Tredicce, E. J. Quel, A. M. Ghazzawi, C. Green, M. A. Pernigo, L. M. Narducci & L. A. Lugiato, “Spatial and temporal instabilities in a CO2 laser”, Phys. Rev. Lett. 62, 1274 (1989).CrossRefGoogle Scholar
  221. C. Tresser, Ann. Inst. Henri Poincaré 40, 441 (1984).zbMATHGoogle Scholar
  222. C. Tresser, J. Physique 45, 837 (1984)MathSciNetCrossRefGoogle Scholar
  223. N. B. Tufillaro, R. Ramshankar & J. P. Gollub, “Order-disorder transition in capillary ripples”, Phys. Rev. Lett. 62, 422 (1989).CrossRefGoogle Scholar
  224. N. B. Tufillaro, “Nonlinear and chaotic string vibrations”, Am. J. Phys. 57, 408 (1989).CrossRefGoogle Scholar
  225. D. K. Umberger, C. Grebogi, E. Ott & D. Afeyan, “Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators”, Phys. Rev. A. 39, 4835 (1989).MathSciNetGoogle Scholar
  226. W. Water and P. Schram, “Generalized dimensions from near-neighbor information”, Phys. Rev. Lett. 47, 1400 (1988).Google Scholar
  227. C. O. Weiss and N. B. Abraham, “Characterizing chaotic attractors underlying single mode laser emission by quantitative laser field phase measurement”, This volume.Google Scholar
  228. C. O. Weiss, N. B. Abraham and U. Hübner, “Homoclinic and Heteroclinic Chaos in a Single-Mode Laser”, Phys. Rev. Lett. 61, 1587–1590 (1988).CrossRefGoogle Scholar
  229. H. G. Winful and S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays”, Appl. Phys. Lett. 53, 1894 (1988).CrossRefGoogle Scholar
  230. A. Wolf, J.B. Swift, H.L. Swinney & J.A. Vastano, “Determining Lyapunov exponents from a time series”, Physica 16D, 285 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  231. S. Adachi, M. Toda & K. Ikeda, “Potential for mixing in quantum chaos”, Phys. Rev. Lett. 61, 655 (1988).CrossRefGoogle Scholar
  232. S. Adachi, M. Toda & K. Ikeda, “Quantum-classical correspondence in many-dimensional quantum chaos”, Phys. Rev. Lett. 61, 659 (1988).CrossRefGoogle Scholar
  233. P. M. Battelino, C. Grebogi, E. Ott and J. A. Yorke, “Chaotic Attractors on a 3-Torus & Torus Break-up”, Physica D 39, 299 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  234. P. Cvitanovic, “Invariant measurement of strange sets in terms of cycles”, Phys. Rev. Lett. 61, 2729 (1988).MathSciNetCrossRefGoogle Scholar
  235. P. Cvitanovic, G.H. Gunaratne & I. Procaccia, “Topological and metric properties of Hénon-type strange attractors”, Phys. Rev. A 38, 1503 (1988).MathSciNetCrossRefGoogle Scholar
  236. W. L. Ditto, S. Rauseo, R. Cawley, C. Grebogi, G.-H. Hsu, E. Kostelich, E. Ott, H.T. Savage, R. Segnan, M.L. Spano & J.A. Yorke, “Experimental observation of crisis-induced intermittency and its critical exponent”, Phys. Rev. Lett. 63, 923 (1989).CrossRefGoogle Scholar
  237. A. M. Fraser, “Reconstructing attractors from scalar time series: a comparison of singular system and redundancy criteria”, Physica 34D, 391 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  238. G. H. Gunaratne and I. Procaccia, “Organization of Chaos”, Phys. Rev. Lett. 59, 1377 (1987).MathSciNetCrossRefGoogle Scholar
  239. G. H. Gunaratne, P. S. Linsay & M. J. Vinson, “Chaos beyond onset: a comparison of theory and experiment”, Phys. Rev. Lett. 63, 1 (1989).MathSciNetCrossRefGoogle Scholar
  240. K. Ikeda, S. Adachi & M. Toda, “Absorption of light by quantum chaos system: can quantum chaos be an origin of dissipation?”, Kyoto preprint.Google Scholar
  241. K. Ikeda & K. Matsumoto, “Information theoretical characterization of turbulence”, Phys. Rev. Lett 62, 2265 (1989).CrossRefGoogle Scholar
  242. K. Ikeda, K. Otsuka & K. Matsumoto, “Maxwell-Bloch turbulence”, to appear in Suppl. Prog. Theor. Phys. (1989).Google Scholar
  243. E. J. Kostelich and H. L. Swinney, “Practical considerations in estimating dimension from time series data”, Physica Scripta 40, 436 (1989).CrossRefGoogle Scholar
  244. D. P. Lathrop and E. J. Kostelich, “Characterization of an experimental strange attractor by periodic orbits”, Phys. Rev. A 40, 4028 (1989).MathSciNetGoogle Scholar
  245. S. D. Meyers, J. Sommeria and H. L. Swinney, “Laboratory study of the dynamics of jovian-type vortices”, Physica 37D, 515 (1989).CrossRefGoogle Scholar
  246. M. Mizuno and K. Ikeda, “An unstable mode selection rule: frustrated optical instability due to competing boundary conditions”, Physica 36D, 327 (1989).MathSciNetCrossRefGoogle Scholar
  247. L. M. Narducci, E. J. Quel & J. R. Tredicce, eds., Lasers and Quantum Optics ( World Scientific, Singapore, 1990 ).Google Scholar
  248. K. Otsuka and K. Ikeda, “Cooperative dynamics and functions in a collective nonlinear optical element system”, Phys. Rev. A 39, 5209 (1989).CrossRefGoogle Scholar
  249. B.-S. Park, C. Grebogi, E. Ott & J. A. Yorke, “Scaling of fractal basin boundaries near intermittency transitions to chaos”, Phys. Rev. A 40, 1576 (1989).MathSciNetCrossRefGoogle Scholar
  250. F. J. Romeiras, C. Grebogi and E. Ott, “Multifractal properties of snapshot attractors of random maps”, Phys. Rev. A 41, 784 (1990).MathSciNetGoogle Scholar
  251. M. Toda, S. Adachi & K. Ikeda, “Dynamical aspects of quantum-classical correspondence in quantum chaos”, to appear in Suppl. Prog. Theor. Phys, No. 98 (1989).Google Scholar
  252. J. A. Vastano, J. E. Pearson, W. Horsthemke & H. L. Swinney, “Turing patterns in an open reactor”, J. Chem. Phys. 88, 6175 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • N. B. Abraham
    • 1
  • A. M. Albano
    • 1
  • N. B. Tufillaro
    • 1
  1. 1.Department of PhysicsBryn Mawr CollegeBryn MawrUSA

Personalised recommendations